

Neutron-rich nuclear structure and theory

Achim Schwenk

trshare.triumf.ca/~schwenk/

Special EEC Meeting, March 25, 2008

LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

Neutron-rich nuclei: from the lab to the cosmos

Matter at extremes in density, composition and temperature

Interaction challenges

⇒ from QCD to EFT/RG interactions

Many-body challenges

⇒ from ab-initio to all nuclei/reactions to neutron stars crusts and interiors

Astrophysics challenges

focus on nuclear structure with e-linac medium mass region is key bridge from lighter nuclei to astrophysics connections to developments/efforts in theory, focus on microscopic approaches

Nuclear masses and theory

Bender et al. (2003)

neutron-rich experiments are needed to understand/predict binding at the extremes

for extrapolations to denser matter

How do we make systematic improvements?

What about theoretical uncertainties?

Roadmap towards microscopic density functional theory

Start from chiral EFT to a given order, here $N^3LO~NN + N^2LO~3N$ Evolve to lower resolution with RG (to $\Lambda \sim 2~fm^{-1}$ for nuclei)

Nuclear matter converged at \approx 2nd order, reduced cutoff dependence Bogner, AS, Furnstahl, Nogga (2005) + improvements, in prep.

generate density functional using density matrix expansion,

Bogner, Furnstahl and UNEDF collaboration, http://unedf.org

First proof of principle calculations

worldwide effort to connect universal density functional to microscopic interactions

for example using density matrix expansion Bogner, Furnstahl, Platter, in prep.

$$\mathcal{E} = \frac{\tau}{2M} + A[\rho] + B[\rho]\tau + C[\rho]|\nabla\rho|^2 + \cdots$$

use EFT/RG interactions: to identify new terms in functional

to quantify theoretical errors of extrapolations to benchmark with ab-initio methods with CC/NCSM

First proof of principle calculations

worldwide effort to connect universal density functional to microscopic interactions

for example using density matrix expansion Bogner, Furnstahl, Platter, in prep.

$$\mathcal{E} = \frac{\tau}{2M} + \mathbf{A}[\rho] + \mathbf{B}[\rho]\tau + \mathbf{C}[\rho]|\nabla\rho|^2 + \cdots$$

use EFT/RG interactions: to identify new terms in functional

to quantify theoretical errors of extrapolations

to benchmark with ab-initio methods with CC/NCS

apply same methods to strongly-interacting Fermi gases with population imbalance

cf. neutron skins

Nuclear masses and pairing

first microscopic pairing functional from low-momentum interactions Lesinski, Duguet, arXiv:0711.4386 and in prep.

study beyond BCS contributions to pairings gaps Baroni et al.

Three-nucleon interactions and nuclear structure

ab-initio calculations highlight the importance of 3N interactions

Navratil et al. (2007)

NN only: $V_{low k} \Lambda = 1.6-2.5 \text{fm}^{-1}$ -1.3...-1.9 MeV same gs 1⁺ vs. 3⁺ inversion in closed shell +3p+3n without 3N interactions: ²²Na, ⁴⁶Va,...

Nowacki, private comm.; Holt, Nowacki, AS, Zuker, in prep.

3N crucial for shell formation see e.g., AS, Zuker (2006)

worldwide efforts towards A~100 based on NN+3N

Location of the neutron drip line: Why so near in Oxygen?...

¹⁶O core

¹⁶O core

Why do $d_{5/2}$ neutrons not pull down $d_{3/2}$ in oxygen?

Monopole interaction and drip lines

Monopole part of nuclear forces $V_{st}^T = \frac{\sum_J V_{stst}^{JT} (2J+1)[1-(-)^{J+T} \delta_{st}]}{\sum_J (2J+1)[1-(-)^{J+T} \delta_{st}]}$

determines interaction of s with t orbit \rightarrow change in $d_{3/2}$ by $N_{d5/2} \nu_m$ \Rightarrow enhancement by number of neutrons

microscopic results based only on NN interactions require phenomenological repulsive contribution to T=1 monopoles

 \rightarrow neutron d_{3/2} remains high, dripline at N=16 for Oxygen indications that $v_{m,pheno}$ due to 3N interactions

Pushing the limits

First ab-initio calculations toward heavier systems:

Towards 3N interactions in medium-mass nuclei

based on low-momentum $V_{low k}(\Lambda) + V_{3N}(\Lambda)$ -22

Hagen et al. (2007)

developed coupled-cluster theory with 3N interactions, first benchmark for ⁴He

Results show that 0-, 1- and 2-body parts of 3N interaction dominate

residual 3N interaction can be neglected! very promising

Monopole shifts and 3N interactions

0-, 1- and 2-body parts of 3N interaction dominate, supports that monopole shifts are due to 3N interactions cf. Zuker (2003)

shell model matrix elements for different cores probe 3N dependence

microscopic calcs based on $V_{low k}(\Lambda)$

large cutoff dependences in T=0 monopoles → expect attraction from 2nd order NN-3N

cutoff independent

T=1 monopoles

 \rightarrow c_i repulsive in nuclear matter!

shell model calculations including 3N interactions possible Holt, AS (2008)

Summary

Photofission region is key experimentally and theoretically to bridge from lighter nuclei to astrophysics

to understand neutron-rich nuclei from N=Z towards the drip line, for masses, radii, structure and shell formation

to match neutron-rich ab-initio to microscopic density functional theory to understand the role of 3N interactions for structure (enhanced by N)

Chiral EFT

4N

3N

NN

Separation of scales: low momenta $\frac{1}{\lambda} = Q \ll \Lambda_b$ breakdown scale Λ_b

explains pheno hierarchy:

NN-3N, π N, π π, electro-weak,... consistency

3N,4N: 2 new couplings to N^3LO resolution/ Λ -dependent couplings

error estimates from truncation order, lower bound from Λ variation

Phase Shift [deg] 20

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Meissner, Nogga, Machleidt,...

Low-momentum interactions from the Renormalization Group

evolve to lower resolution/cutoffs by integrating out high-momenta, can be carried out exactly for NN interactions Bogner, Kuo, AS (2003)

 $\Lambda = 5.0 \text{ fm}^{-1}$

 $\Lambda = 4.0 \text{ fm}^{-1}$

 $\Lambda = 3.0 \text{ fm}^{-1}$

 $\Lambda = 2.0 \text{ fm}^{-1}$

 $\Lambda = 1.5 \, \text{fm}^{-1}$

calculations

Chiral EFT and RG

RG generates all short-range operators, so that low-energy NN is reproduced

find \approx universality from different N³LO potentials

weakens off-diag coupling

Corresponding 3N interactions

from leading N²LO chiral EFT ~ $(Q/\Lambda)^3$ van Kolck (1994), Epelbaum et al. (2002)

Meissner (2007)

$$c_i$$
 from πN , consistent with NN $c_1 = -0.9^{+0.2}_{-0.5}$, $c_3 = -4.7^{+1.2}_{-1.0}$, $c_4 = 3.5^{+0.5}_{-0.2}$

 c_3,c_4 important for structure, large uncertainties at present

4N interactions: E/A~1 MeV not unreasonable in nuclear matter

 $V_{3N}(\Lambda)$ based on fit of D,E to A=3,4 binding energies for range of cutoffs

chiral EFT is complete basis \rightarrow 3N up to truncation errors

3N interactions perturbative for $\Lambda \lesssim 2\,\mathrm{fm}^{-1}$ Nogga, Bogner, AS (2004)