

Beam Strategy Meeting

Monday, February 25, 2013, 15:00-16:10

Attending:

F. Ames, P. Bricault, G. Hackman, R. Kruecken (chair), P. Kunz, J. Lassen, L. Merminga, C. Morton, Ch. Ruiz

Excused:

J. Behr, J. Dilling

Minutes:

1. Stable beam developments

The DRAGON group has prepared a list of stable beams required for their project. The table is appended to these minutes.

The different were discussed:

- ⁷Li:
 - 1000:1 purity requirement has to be clarified Chris Ruiz reported after meeting that it refers to mass-7 purity. Other masses can be distinguished and suppressed
 - required intensities should be possible as Li³⁺ beam from supernanogan, some tests need to be carried out, main contaminant N²⁺
- ⁸⁸Sr beam needs development but is not highest priority
- ³⁴S is possible from enriched material, extensive cleaning of source needed afterwards
- Ne, Na beams are established and are not a problem
- ³⁵Cl beam has been used 2 years ago

Colin will communicate development needs to Keerthi

2. Developments needed for ⁷Be beam (DRAGON)

Two options for ⁷Be beam production are identified.

• buy as Be-oxide and insert into ISAC target container. Not clear if this is available.

 Produce ⁷Be online and extract. Yields need to be measured. Consensus is that this can be done at the yield station, taking precautions regarding the long lifetime.

⁷Be yields will be measured from SiC target (#1) and from Ta target (#2) using laser ionization.

3. Target schedule for 2013

Discussed SiC-FEBIAD/CTL target. There is uncertainty on the extraction of CO gas from the target with the CTL. The main purpose of the target is the development of ¹⁸Ne beam for tests with TUDA in ISAC-I. ¹⁴O intensity (as CO) is expected to be sufficient for GPS and TITAN needs. The 8pi experiment running in parallel to the GPS may only have marginal intensities unless extraction from this target is similar to the last test with SiC-FEBIAD target in 2012. The expected ¹⁵O intensities are not sufficient, even in the best-case scenario, for 10⁶ pps to ISAC-II. Therefore S900 cannot be scheduled.

4. Overall development goals in 2013

The overall development goals are reviewed and discussed.

Clear commitments exist to

- Completion and testing of the LIS-RFQ
- Completion of the conditioning station
- Completion and operation of FEBIAD/CTL
- Refurbishment of TM3 for operation in Schedule 125

These developments require substantial resources and priorities have to be set for additional development projects.

There are two further opportunities for developments:

- Development of a neutron converter in cooperation w/ ISOLDE
- Design, construction and implementation of a new rotating beam mechanism (design review this week)

Since the development of a rotating beam holds the promise of substantially increased extraction efficiencies this development is seen as high priority and thus will be pursued this year for implementation in the 2014 shutdown. The neutron converter development will be carried out in 2014.

Instead of the originally envisioned UC target with neutron converter, target #6 will instead be a metallic U/Ta target for the possible development of neutron-rich Ca beams, which are not released well from UC targets due to the formation of carbides. There is some risk involved in the operation of this target since the operating temperatures have to be limited to avoid melting of the U on the target disks.

The table below summarizes the planning for the target sequence in 2013.

#	Date	Tgt	lon- source	ТМ	Example beams	Examples of possible experiments	Development
1	4/18- 5/7	SiC	SIS/LIS- RFQ	TM4	^{20,23} Mg, ²⁵ Al,	RFQ commissioning, TITIAN (standby)	RFQ-LIS R&D
2	5/8 – 6/2	Та	SIS/LIS	TM1	⁸ Li, ^{10,11} Be	bNMR, TIGRESS	No accelerated beams heavier than A=11 , ⁷ Be yields
3	6/5 – 7/4	Та	SIS/LIS	TM4	^{9,11} Li, ⁸ Li, ^{21,25} Na	TIGRESS, IRIS, HERACLES, bNMR	Test Be yields, ³⁰⁻³³ Na
4	7/10 - 8/6	UC	SIS/LIS	TM1	Rb, Sr, Fr	8pi, TIGRESS, FrPNC, laser	²³⁹ Pu, ³⁰⁻³³ Na
5	8/7 – 9/4	SiC	FEBIAD- CTL	TM4	¹⁸ Ne, ¹⁴ O, ¹⁵ O (?)	TUDA-I, 8pi/GPS, TIGRESS (?)	¹⁸ Ne yields
					Mini SI	nutdown	
6		U/Ta	SIS/LIS	TM3	^{5x} Ca, ^{5x} Sc	8pi, TITAN (standby)	Ca, Sc yields
7		Та	SIS/LIS	TM4	¹¹ Be, ^{9,11} Li	TIGRESS, IRIS, TUDA, bnmr	To be decided if we run low or high power
8		NiO	FEBIAD	TM3	¹⁰ C	8pi/GPS, IRIS, TITAN	Delivery of light C beam
9		UC	SIS/LIS- RFQ	TM4	²²¹ At, Ac, Cd	8pi, TITAN	First production with LIS- RFQ source: At,Ac,Cd

February 25, 2013

Reiner Kruecken

Beam	Intensity	Minimum	Purity ratio	Experiment	Description	Status	Priority	Desired	Comments
	(bbs)	intensity (pps)	minimum (beam:contaminant)	number				run dates	
	1e+9	1e+7	1000:1	S1025	7Be+p at DRAGON	Approved	Н	Aug-Sept 2013	Li required for backgrounds and commissioning
48 Ti	Goal:	test	test	S1289LOI	44Ti(p,g)/(a,p) at	Endorsed	1 (a,p)	Shutdown/	Efficiency tests of TiF ₄ in
	>1e+7				DRAGON and TUDA		2 (p,g)	startup 2013	Supernanogan oven. Accelerator not needed. 1-2 weeks required.*
# =	Goal: >1e+7	5e+6	1000:1					2014	Measurement (OLIS RIB approval needed)
Λ _{IC}	1e+8	1e+6	100:1					2014	Charge State Distributions for 44Ti(p,g)
$^{80} m Kr$	le+11	1e+10	1000:1	TEST	DRAGON high	N/A	N/A	April 2013	Enriched ⁸⁰ Kr is available for
s.Sr	1e+8	1e+6	100:1					April 2013	Charge State Distributions
²⁰ Ne	1.2e+12	1e+12	1000:1	S1363	20Ne(p,g)21Na and	Approved	M	Oct-Dec 2013	Measurement
²¹ Ne	Se+8	1e+8	1000:1		21Ne(p,g)22Na at DRAGON			Oct-Dec 2013	Measurement
23Na	5e+9	1e+9	100:1					Oct-Dec 2013	Charge State Distributions
s _S	Se+9	1e+9	1000:1	S1372	34S(p,g)/(a,g) at DRAGON	Approved	M	May-Jul 2013	Measurement
32CI	1e+8	1e+6	100:1					May-Jul 2013	Charge state distributions for ³⁴ S(p,g)
³8Ar	1e+8	1e+6	100:1					May-Jul 2013	Charge state distributions ³⁴ S(a,g)

* Plan to test efficiency by placing a known quantity of TiE₄ into an OLIS oven, establishing a beam, and running until the material is depleted or we reach the end of the time alotted. TiE₄ is soluble in water and so the quantity will be controlled by making an appropriately dilute solution, placing a controlled amount of the solution in the oven and letting the water evaporate away before use.