

ISAC beam delivery overview

25-26 MARCH 2008 J.-M. POUTISSOU

LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution

ISAC program

- Nuclear structure:
 - 8Pi,Tigress,TiTAN,Heracles,SHARC,EMMA,
 - DESCANT, IRIS
- Nuclear Astrophysics:
 - Tuda, Dragon, TiTAN, DSL, , Tactic
- Symmetries:
 - Trinat, GPS, TiTAN, Laser Spec, Griffin
- Material science:
 - B-NMR,B-NQR

New modus operandi

- From now on the EEC approval process will have two stages:
 - Stage 1:Physics approval
 - Stage 2: Beam shift allocation following a mandatory readiness review consisting of both a beam readiness and an experiment readiness review by a new internal Science/Accelerator committee.
 - Stage 2 approval (beam allocation) will be given within a rolling envelope of shifts which should allow us to cover for two consecutive years of beam delivery at the present rate. (400 Shifts worth).
 - The implication being that an experiment with stage 2 approval should find its way on the schedule within a two year timeframe.

December07 EEC review process

- At the December07 meeting, all new proposals followed the new two steps approval process.
- All previous SAP proposals were reevaluated in the context of group priority presentations
- 384 shifts allocated by SAPEEC and 66 B-NMR shifts by MMS committee
- 10 experiments removed from backlog, 6 completed
- For SAP exp: 30 stage 2, 45 stage 1

ISAC beam delivery(2008)

• Cyclotron shutdowns; 13 weeks

• Startup: 4 weeks

• Hi Intensity running: 31 weeks

• Low Intensity running: 4 weeks

ISAC beamtime

- Bl2A beamtime available
 - 5040 hours (420 12h shifts)

• Beam dev: 120 shifts [2007: 65sch: 21 del] • Experiments(300 shifts) [2007 : 278sch:183del)]

Overall delivery efficiency: del/sch=66%

ISAC facts

- ISAC Target lifetime: 6*10**20 protons ~ 4.5 weeks at 70µamps (less if many beam interruptions).
- Minimum turn around time 3 weeks
- Beam intensity stability is critical
- Temperature distribution in the target is critical

Where is the pressure coming from?

- Beam development (30% of beamtime):
 - New beams
 - Very intense beams (Nuclear astrophysics)
 - New ion sources
 - New target materials
 - Fast turn around/flexibility
- This is key to our program

Where is the pressure coming from?

- Symmetry program:
 - Actinide target
 - Long runs
 - Systematics investigations
 - Dedicated set up, multiples runs with varied conditions
 - Analogy with TWIST or Pienu
 - Safety/Licence requirements
 - Target production, target handling α -emitters handling

Where is the pressure coming from?

- Nuclear Astrophysics(radiative capture):
 - Long runs (low cross-section)
 - Intensity limited
 - Contamination
 - Actinide target, E-Linac
- Nuclear structure:
 - Exoticity (actinide target)
 - Beam quality
 - Contamination

Where is the pressure coming from?

- Material science:
 - Easy beam to produce (8Li, 11Be)
 - Stable (routine?) operation
 - Short runs
 - Many samples
 - Temperature, Field dependence
 - Limited by beam time availability
 - Cannot expand to a full user program

Actinide target status

- Safety report for test submitted to CNSC
 - − <2µamps beam intensity
 - Up to 300μamps-hours integrated current
- CNSC pre-review March 26
- Modifications to radiation monitoring in place (α -emitters detection)
- Target preparation laboratory in place
- Target material available? Will use UO₂
- 4 weeks of tests scheduled (Aug-Sept 2008)

Conclusion

- Must provide more beamtime to users and beam developers.
- Large investments in instruments not used efficiently. Presently running one experiment at a time.
- Large community awaiting beamtime.

NSERC and NRC support appreciated DOE/NSF/PPRC/IN2P3/CEA/MEXT

4004 Wesbrook Mall Vancouver, B.C. Canada V6T 2A3 Tel: 604 222-1047 Fax: 604 222-1074 www.triumf.ca

ISAC experiments status

•	Shift situation	delivered up 31 dec07	Schedu sch	ale 111 del	Schedu sch	le 112 del
	Nuclear structure	348	122	90.5	35	24
•	Nuclear Astrophysics	284	10	3	16	5
•	Symmetries	179	0		28	20
•	Material Science	204.5	27	19	40	22
•						
		1015.5	159	112.5	119	71
	Beam Dev		(49)	5	16	16