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Mass as indicator for
nuclear structure and new phenomena

* Masses and separation-energies sensitive tool to uncover structure and
unexpected deviations.

* The ‘island of inversion’ for neutron-rich light nuclei at Na was found
(C.Thibault et al.) from mass measurements

* New and better masses confirmed change in Magic Numbers F. Sarazin PRL
(2000). g SN : : |

* Isomers in Fe discovered via Penning I , :
trap mass measurements
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Mass measurements:

nuclear structure& theory

* Nuclear structure at neutron-rich heavy (A=132) hot topic to test

two-neutron separation energies |

L data do not exist
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theory, for nuclear astrophysics, and nuclear structure.

* Nuclear theory needs
experimental input to refine the
applied models.

» Astrophysics models require
reliable data to calculate r-
process production path.

*  New mass measurements (Dwarschak et al PRL 2008) removed the
proposed shell gap at N=84 and restored N=82 as Magic Number.

» This indicated no shell quenching and allows to ‘fine-tune’ theory, for
ex.: HFB-14 (Goriely, Samyn & Pearson)

+ BUT: mass measurements difficult, since yields are low and half-lives
short (plus beam purity is a problem!)

r-process path: measurements at ISAC.
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Pierre’s plot shows the reach for
r-process nuclei. In the Sn-region
we can reach the ‘path’ and give
experimental input for network.
Impact to be determined!
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Crust processes: where could we contribute?
We need experimental data! 0 [TT] rl Recentm;sfiﬂ
Masses, half-lives, levels P —— e as
Recent mass (Scheidenberger et al.,
B Known mass ® ] measurements Matos et al.) ]
at Jyvaskyla
o (Hager et. al. 2006)
] T i
0[] Q-value S
= 0 oo
3% IZIZ\ZE)Z)Z (Thomas et al. 2005)
Recent TOF mass | ]
ag measurements
| at MSU
30 [[ ] (Matos, Estrade et alilr | l I on
2@ [T |
% []
1
i N
| L
?Z’f: :
! ! — 44
*E’ " 42 gMISS:C_CL‘RAC\‘:iﬁ:
ﬁ 36 38 L
I +
Production in limited area with
the photo fission system
200 uA p on 25 glem2 U geometric mean of calculations | « E-linac provides unique area of
%0 —== chart of isotopes.
. * Production sufficient down to
gof- at A=132 we have 17__;6‘6bars 10 isotopes/ second.
s * Precise and accurate data
60 needed!
- e Cleaner beams due to limited
production (isobar suppression).
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capabilities (resonant laser)
to provide beams in best
quality (low emittance)
and very clean
(low or zero
contamination).
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Single ion mass measurements

TITAN
Triumf’'s lon Trap
for Atomic and Nuclear
science

*Penning trap mass measurements on
isotopes with short half-life T,,~ 10 ms
and low production yields (= 10 ions/s)

cyclotron (+)

magnetron (-)

TITAN system

Penning Trap

Mass Mesurement

Cooler Trap

Mass selective p-cooling of HCls|

—
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boost sensitivity with HCI and use extra selectivity

Mass measurements with TITAN:
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mass not known exp. dm =500 # keV, can we measure it? T i

PROBLEM: low production, short-half-life, isobars!

Example: 136Sn,T,,, = 250ms
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1E6 Penning trap system with highly
SINGLY CRARGED 10N charged ions is very sensitive.
: 1 We have only one ion in the trap
RF EXCITATION TIME or HALF-LIFE [s] . .
+ ability to suppress some isobars
TITAN performance:
Study of most neutron-rich nucleus: éHe
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Penning trap limit: how short can you go?

it Sm/m ~ 7x10-° + TITAN direct mass measurement of 1Li
E Ty2=85ms E * Shortest-lived isotope for Penning trap mass
ss-{¥ 3 [ measurement!
E ﬁ w « Run @ 50 Hz and 20ms excitation
77 § % ; « ISAC yield of 1200 ions/s.
§45_ ﬁ' » Limit for half-lives not a problem for photo-fission
h products!

* Sensitivity presently at ~100 ions/s (can be
improved further).

11, .+

Li
35T T T T 2 ]
-100 50 0 50 100 : !
Ve - 5147353.46 [Hz] 400 ¢ MISTRALO3 ]
e 250k .l\nha_\_'em}u et al. TIT:;LN“TJ;
is :‘: 250 Young et al. ) i
g : \_,f?‘ 200 Wouters et al. o
TITAN5;,,8m=0.555 keV 150 [+ Thibault et al. :
e ]
. — 100} ]

Conclusion:

» Mass spectrometry is a key field to provide basic and benchmark data,
for nuclear structure, for theory, and (where needed) to guide
extrapolations into nuclear-astrophysics relevant regions.

» Mass spectroscopy often a discovery tool for new phenomena:
— Island of Inversion.
— Restoration of N=82 as Magic Number.
— Finding of new isomers in unexpected regions.
*  What do you need:
— Sensitivity (single ions), and we can measure at 100 ions/s.
— Selectivity (isomer suppression via mass selective cooling).
— Precision and accuracy (proven Penning trap technique).
— Ability to measure short half-lives (''Li...).

* The e-linac will provide unique access to isotopes particularly important
for nuclear structure and nuclear astrophysics, and we have world-class
experimental facilities to harvest the isotopes. One of them is the TITAN
Penning trap mass spectrometer.

* Need to identify key isotopes for network calculations, and evaluate the
required mass precision (can vary for ex. for CNO from MeV to 1 keV).




ISAC photo-fission in comparison
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Comparison '38Sn:
ISAC: 108/s
FAIR: 10%/s

ISF: 100-10%/s

107

ABEL (ANL upgrade) |20F ABEL: 104-108/s
T T .,uﬁm — 1 | 1 1 1 | || (ISOL: #is production in target, but extraction

.'-3'" and ionisation losses! All other: beam readily
T 4n Eﬂ available for experiment)

-—— | *New facilities have global approach for production, here

; very localized dedicated effort to boost very neutron rich nuclei.
*Operation planned for in ~5 years after funding
(before 2015 pending funding).
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TOF-method (planned for ISF, SPIRAL Il
Limited precision and accuracy (~500 keV-1 MeV)

(W.Mittig, Proc. Int. Sym. on structure and reactions of unstable nuclei (1991) 8)
Bp (Galotte)

Bp = ymvig

Paint objet SBPEG

ldentification (téléscope Si)
Tstop (DE2) Gelare)
Bp (chembre d'ignisation)

Longueur de vok ~8Zm

- 46Ca (60 A-MeV)+ 181Ta

v Time of flight ~ 1 us
/v Exotic nuclei
' Mapping of an entire region of the mass surface

Needs reference masses with high quality in vicinity (like PT) Reference nuclei




TOF-method, multi turns (storage rings, GSI, FAIR, RIKEN

Requires cooling (~1sec & needs reference masses
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Comparison of technigues:
Time-of-flight
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TITAN can provide high quality data for direct measurements or for
reference measurements! (no other facility has reach the short half-
lives & precision combination!)

We have unique facility and experiment set-up.




Mass measurement via time-of-flight (TOF)

Ions in the trap are
*  submitted to an rf-excitation o of duration T

- E (w.r) 0B(z) .
» accelerated by the magnetic field gradient: F=- % 0[: s
» stopped by an MCP detector, TOF is recorded
fp—S 1 Large E, = shorter TOF
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System for externally produced ions.




