

Physics motivation for an electrondriven photo-fission facility at TRIUMF

mass measurements for nuclear structure and astrophysics

Jens Dilling TRIUMF

LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution

Mass as indicator for nuclear structure and new phenomena

- Masses and separation-energies sensitive tool to uncover structure and unexpected deviations.
- The 'island of inversion' for neutron-rich light nuclei at Na was found (C.Thibault et al.) from mass measurements
- New and better masses confirmed change in Magic Numbers F. Sarazin PRL (2000).
- Isomers in Fe discovered via Penning trap mass measurements (M. Bloch et al. accepted PRL)

Mass measurements: nuclear structure& theory

 Nuclear structure at neutron-rich heavy (A=132) hot topic to test theory, for nuclear astrophysics, and nuclear structure.

- Nuclear theory needs experimental input to refine the applied models.
- Astrophysics models require reliable data to calculate rprocess production path.
- New mass measurements (Dwarschak et al PRL 2008) removed the proposed shell gap at N=84 and restored N=82 as Magic Number.
- This indicated no shell quenching and allows to 'fine-tune' theory, for ex.: HFB-14 (Goriely, Samyn & Pearson)
- BUT: mass measurements difficult, since yields are low and half-lives short (plus beam purity is a problem!)

Conclusion:

- Mass spectrometry is a key field to provide basic and benchmark data, for nuclear structure, for theory, and (where needed) to guide extrapolations into nuclear-astrophysics relevant regions.
- Mass spectroscopy often a discovery tool for new phenomena:
 - Island of Inversion.
 - Restoration of N=82 as Magic Number.
 - Finding of new isomers in unexpected regions.
- What do you need:
 - Sensitivity (single ions), and we can measure at 100 ions/s.
 - Selectivity (isomer suppression via mass selective cooling).
 - Precision and accuracy (proven Penning trap technique).
 - Ability to measure short half-lives (11Li...).
- The e-linac will provide unique access to isotopes particularly important for nuclear structure and nuclear astrophysics, and we have world-class experimental facilities to harvest the isotopes. One of them is the TITAN Penning trap mass spectrometer.
- Need to identify key isotopes for network calculations, and evaluate the required mass precision (can vary for ex. for CNO from MeV to 1 keV).

Mass measurement via time-of-flight (TOF)

Ions in the trap are

- submitted to an rf-excitation ω_{rf} of duration T_{rf} accelerated by the magnetic field gradient: stopped by an MCP detector, TOF is recorded

The mass is found by a scan of ω_{rf} around the resonance: $\omega_{rf} = \omega_c = \frac{qB}{m}$

System for externally produced ions.