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What can we learn from photo reactions?

1. Understanding of the systems at hand.

2. A test of the Hamiltonian at regimes not
accessible by elastic reactions.

3. Reaction rates as input for experiments or
applications (e.g. astrophysics).
4. Underlying degrees of freedom.

5. The transition from single particle to
collective behavior.
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Photo Reactions

The Interaction Hamiltonian between the photon field
A(x) and the atomic/nuclear system

(¢, P )

Hy = —z /da:A(a:) - J(x)

The current is a sum of convection and spin currents

’J(w):Jc(w)+VX“(m) (EO’PO)

ty =2 [ dz (@) J(@) + B(@) - n(e)}
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Photo reactions - Theoretical considerations

JF consistent with V'

The Wave Functions

e We solve the A-body non-realtivistic Schroedinger equation.

S SR
ijk

e The Hamiltonian

High precision two-nucleon potentials, well constraint by NN phaseshifts
Less established 3NF

e EFT provides a solid theoretical framework for construction of the potentials.

e Phenomenological potential models are not that bad either.
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Photo reactions - Theoretical considerations (II)

JH consistent with V'

meson exchange currents

The Electro-Magnetic Current

e The EM current is a sum of convection and spin currents

[J(@) = Jo(@) + Ts(@) = Jo(@) + V x p()

e Classicaly, the convection current J. = 3, Z;v; is the flow of the charged
particles.

e In nuclei J.(x) is mainly due to proton movement.

e Meson exchange between nucleons leads to 2,3, .. .-body currents
J=J1+Ja+ ...

e Cold atoms are neutral J.(x) = 0 and the current p(x) is dominated by the
electronic spins.
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Nuclear Physics - A tale of two potentials

The nuclear Hamiltonian

H:—Z2L2V?+ZVU+ Z Vije +.-.
3

N 1<J i<j<k

e The Potential is composed of EM and NUCLEAR terms.

Conclusion

e The NUCLEAR force cannot be derived from QCD and must be modeled.

The AV18 NN-Force
e The 2-body potential V;; = vfj + Ufjﬂ + vfj
° v;"j - A Yukawa type interaction e =" /r, vfj” o e I,

° vfj is expanded into a series of operators dictated by the symmetries.

e NNN force must be supplemented to reproduce 3,4-body binding-energies.

The JISP16 Potential

e A formal expansion of the potential

Vi = > 1s)in )V (1)

lsjnn’

e The HO basis is used, Véif,)j fitted to reproduce NN scattering data.
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A tale of two potentials

e AV18+UBIX Argonne V18 NN force
+ Urbana IX NNN force

e JISP16 J-matrix Inverse Scattering
Potential, Shirokov et al.

Binding Energies

| AVI8+UBIX JISP16 Nature

D 2.24 2.24 2.24
3SH 8.48 8.35 8.48
3He 7.74 7.65 7.72
4He 28.5 28.3 28.3

Sum Rules

Conclusion
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A tale of two potentials

Photodisintegration cross-section for A=2,3,4
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Ultra Cold atoms

e A 3-body bound state E3 < 0 exists
even if the 2-body systems is . ..
unbound E; > 0. Universal insights

from few-body land

Chris H. Greene

1o tune atomic inferactions has inspired theorists and
entalists to investigate those properties of few-particle systems that
hold universally, regardless of the specific nature of the interparticle force.
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even if the 2-body systems is
unbound FE2 > 0.
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E> = 0 the 3-body system will have

an infinite number of bound states.

The 3-body spectrum is

Ep, = Ege™27"/50 with

spo = 1.00623.

In atomic traps as can be
manipulated through the Fesbach
resonance.

Particle losses in traps are closely
related to Efimov’s physics through
the 3-body recombination process
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Few-Body Universality in a Bosonic "Li system
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Photoassociation of Atomic Molecules

RF-induce atom loss resonaces for different values of bias magnetic fields.

a) o D et
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Number of Atoms
z
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O. Machtey, Z. Shotan, N. Gross and L. Khaykovich
PRL 108, 210406 (2012)
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The Static Response - Inelastic Reactions

e The response of an A-particle system is closely related to the static moments
of the charge density
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e Conclusion A: In general the Dipole is the leading term.



Theoretical Considerations Nuclear Physics Ultra Cold Atoms Multipole Expansion Sum Rules Conclusion

The Static Response - Inelastic Reactions

e The response of an A-particle system is closely related to the static moments
of the charge density 4
p(x) = Z Zi6(x —7;)
i
e The Fourier Transform

A
o(@) = [ dap@)cir® =3zt

e In the long wavelength limit ¢ — 0

A A A
1
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e For a system of identical particles

p(q) = AZy +iZ1 Rem — le '+4

15 ZY27"1 )Y27n(7"i))

e Conclusion A: In general the Dipole is the leading term.

e Conclusion B: For identical particles the leading terms are R? and Q.
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In the final state the photon can either change one of
the spins or leave them untouched.

Spin-flip reaction

Frozen-Spin reaction

Conclusions

H
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Photo Reactions with Cold-Atoms

e For Spin-flip reactions we get the ”Fermi” operator

R(w) = Cki: |(@|®0)|° 8(Ef — Eo —w)
T

e For Frozen-Spin reactions we get a sum of the
monopole operator M = R? = > r? and the
Quadrupole operator Q = S r2Ya(F;)

°

e The response is given by

I

R(w) = k° ﬁ (@ /10|0)|> 5(E; — Eo — w)
T
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Photoassociation of The Atomic Dimer

For the dimer case the response function can be written as

[{p2(a)[1Ql1%0)[?

1 - 1
Rw) = Cw® | = po(@ I I100)? + ==

Where the G.S. wave function is given by
Yo = YovV2ke " /r ; k~1/as
The continuum state is given by ¢¢(q) = Ye(#)xe(r)/7

Xe(r) = 2qrcos 645¢(qr) — sin dgne(qr)]

Conclusions
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Photoassociation of The Atomic Dimer

For the dimer case the response function can be written as

Mj4bo)|? + [(e2(D) 1 Ql1%0)[?

1 1
R(w) = Cw” | 5 l(vo(a) N

e Where the G.S. wave function is given by
Yo = YovV2ke " /r ; k~1/as

The continuum state is given by ¢¢(q) = Ye(#)xe(r)/7

Xe(r) = 2qrcos 645¢(qr) — sin dgne(qr)]

e The £ = 0 matrix element

2
- 1 49V 2K . K 2
(o (@I llo)” = -~ <M> [“’850(3# — @) —sindol (3" - ,{2)}
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Photoassociation of The Atomic Dimer

e For the dimer case the response function can be written as

R(w) = Cw® M|l4o)[? + [{p2(a)[1Ql1%0)[?

(wo(q)

1 1
62 5152

e Where the G.S. wave function is given by

Yo = YovV2ke " /r ; k~1/as

The continuum state is given by ¢¢(q) = Ye(#)xe(r)/7
Xe(r) = 2qrcos 645¢(qr) — sin dgne(qr)]

e The £ = 0 matrix element

2
- 1 49V 2K . K 2
(o (@I llo)” = -~ <M> [“’S%W — @) —sindol (3" - ,{2)}

e The £ = 2 matrix element, assuming d2 = 0

2 @IQllo)? = —

2
16¢3v2k
™

(@2 + K2)3
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Photoassociation of The Atomic Dimer

The s-wave and d-wave 1.0
components in the /
response function — 0.8
e upper pin2el E 0.6 /\\\
afress = , / \\
e lower pannel E 0.4 N\
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K o 02
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e blue - quadrupole 2 0.0 o
<
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Photoassociation rates

Photoassociation of "Li
atoms

as = 1000aqg

T = 5uK (lower panel), T = 25K
(upper panel)
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Photoassociation rates

Photoassociation of "Li
atoms

as = 1000aqg

T = 5uK (lower panel), T = 25K
(upper panel)

red - 72 monopole, blue - quadrupole
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Photoassociation of The Atomic Dimer

Comparison to the Khaykovich group data

1.2 1.2

as = 847ag T = 2.6 K as = 64009 T' = 1.8uK
o . Khaykovich = | o Khaykovich =
0.8 / KP\' . 0.8
ey

0.6 ] \\' 0.6

0.4 7{ - 0.4

02 / \ 02

. S e, .
0.0 . — 00 . .
-0.2 -0.2
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.1 1.2 1.3 1.4 1.5 1.6 1.7
RF frequency [MHz| RF frequency [MHz|

o The fitted values of as and T are in reasonable agreement with the estimates

of the experimental group.
o Effect of RF field on dimers not included.

e Finite time effect

Disagreement are due to 3-body (4-body?) association.
Effects of d2 # 0 are negligible.
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The Atomic Trimer
The quadrupole response of the bosonic

trimer
1e+06 £ : —— —
x — £=00034] ]
le+05 H — =0047 | ]
g — £=019 | J
10000 £ . \
_ g E <+ ® ./
= ¥ ]
= NN
~ 1000 N\ : o
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-2 ]
100} \ E
10 E|
~—_ E
— E
- ]
) [N SN RIS SN SRS SIS RIS A B e

0 02 04 06 08 1 12 14 16 18
2 2
-0, [h /mr0 ]
E. Liverts, B. Bazak, and N. Barnea
Phys. Rev. Lett. 108, 112501 (2012).
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e Can be expressed as GS observable utilizing the closure of the eigenstates of
H.
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Photodisintegration Sum Rules

Sn E/ dww"™ R(w)

th

The sum rule S,

o Exists if R(w) — 0 faster than w™"71.

e Can be expressed as GS observable utilizing the closure of the eigenstates of
H.

S1 = (0][0,[H,0]]|0) = (0|O (H — Ep) O|0)
So = (0/00|0)

1
S_ = (0|0——7=0|0
1= (00550
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Naive Scaling
e Using simple dimensional arguments we expect that

r~1/VE

2SO

e The Quadrupole operator behaves as r
R(w) ~r*/E~1/E3
o It follows that the sum rules should fulfill

Sy ~1/E?"

So ~ 1/E?
S_1~1/E3
So/S_1~E
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Calculated Sum Rules

1e+08 e Squares Gauss
Sg— Potential

e Triangles Yukawa
Potential

1e+06

R B

Sum Rule [a.u.]

1
0.002 0.008 0.032 0.128
Byl [h%/mr,’]

Fitted lines
S—l — A_1E72.13

SD — AOE71434
Sy = AIE—O455



> For S_1 we got a power of 2.13

Naive scaling doesn’t

For S we got a power of 0.55
instead of 1.

For Sp we got a power of 1.33
instead of 2.

instead of 3.

The ration Sy, /S, -1 ~ E%® instead
of Sy /Sp—1 ~ E.

The results seems to be independent
of the short range specifications of
the potential.

Sum Rules
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2. For spin-flip reaction a Fermi type operator is the leading contribution to the
cross-section, and R(w) « w.

3. For frozen-spin reactions the monopole R? and the Quadrupole are the

leading terms, and R(w) o< w5.

4. We have studied Dimer formation and found that the reaction mechanism
change from monopole to quadrupole with increasing gas temprature.
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