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What can we learn from photo reactions?

1. Understanding of the systems at hand.

2. A test of the Hamiltonian at regimes not
accessible by elastic reactions.

3. Reaction rates as input for experiments or
applications (e.g. astrophysics).

4. Underlying degrees of freedom.

5. The transition from single particle to
collective behavior.
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Photo Reactions

The Interaction Hamiltonian between the photon field
A(x) and the atomic/nuclear system

HI = −
e

c

∫
dxA(x) · J(x)

The current is a sum of convection and spin currents

J(x) = Jc(x) + ∇× µ(x)

HI = −
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dx {A(x) · Jc(x) +B(x) · µ(x)}
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Photo reactions - Theoretical considerations

The Wave Functions
• We solve the A-body non-realtivistic Schroedinger equation.

• The Hamiltonian
H = T +

∑
ij

V
(2)
ij +

∑
ijk

V
(3)
ijk + . . .

High precision two-nucleon potentials, well constraint by NN phaseshifts
Less established 3NF

• EFT provides a solid theoretical framework for construction of the potentials.

• Phenomenological potential models are not that bad either.
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Photo reactions - Theoretical considerations (II)

The Electro-Magnetic Current
• The EM current is a sum of convection and spin currents

J(x) = Jc(x) + Js(x) = Jc(x) +∇× µ(x)

• Classicaly, the convection current Jc =
∑
i Zivi is the flow of the charged

particles.

• In nuclei Jc(x) is mainly due to proton movement.

• Meson exchange between nucleons leads to 2, 3, . . .-body currents
J = J1 + J2 + . . .

• Cold atoms are neutral Jc(x) = 0 and the current µ(x) is dominated by the
electronic spins.
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Nuclear Physics - A tale of two potentials

• The nuclear Hamiltonian

H = −
∑
i

~2

2mN
∇2
i +

∑
i<j

Vij +
∑
i<j<k

Vijk + . . .

• The Potential is composed of EM and NUCLEAR terms.

• The NUCLEAR force cannot be derived from QCD and must be modeled.

The AV18 NN-Force

• The 2-body potential Vij = vsij + v2πij + vπij

• vπij - A Yukawa type interaction e−µr/r, v2πij ∝ e−2µr/r.

• vsij is expanded into a series of operators dictated by the symmetries.

• NNN force must be supplemented to reproduce 3,4-body binding-energies.

The JISP16 Potential

• A formal expansion of the potential

Vij =
∑
lsjnn′

|(ls)jn′〉V (ls)j
nn′ 〈(ls)jn|

• The HO basis is used, V
(ls)j
nn′ fitted to reproduce NN scattering data.
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A tale of two potentials

• AV18+UBIX Argonne V18 NN force
+ Urbana IX NNN force

• JISP16 J-matrix Inverse Scattering
Potential, Shirokov et al.

Binding Energies

AV18+UBIX JISP16 Nature
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3H 8.48 8.35 8.48
3He 7.74 7.65 7.72
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The Experimental Verdict !

D. Gazit, S. Bacca, N. Barnea, W.
Leidemann, and G. Orlandini, PRL 96,
112301 (2006)
S. Quaglioni, and P. Navratil PLB 652,
370 (2007)
R. Raut et al., PRL 108, 042502 (2012)

W. Tornow et al., PRC85, 061001

(2012)
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Ultra Cold atoms
Bose systems, short range force, energy scale 10−9eV

• A 3-body bound state E3 < 0 exists
even if the 2-body systems is
unbound E2 > 0.

• When E2 = 0, as −→∞.

• In 1970 V. Efimov found out that if
E2 = 0 the 3-body system will have
an infinite number of bound states.

• The 3-body spectrum is
En = E0e−2πn/s0 with
s0 = 1.00623.

• In atomic traps as can be
manipulated through the Fesbach
resonance.

• Particle losses in traps are closely
related to Efimov’s physics through
the 3-body recombination process

A+A+A −→ A2 +A

Physics Today, March 2010
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Few-Body Universality in a Bosonic 7Li system
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Photoassociation of Atomic Molecules
The quest for the Efimov Effect

RF-induce atom loss resonaces for different values of bias magnetic fields.

O. Machtey, Z. Shotan, N. Gross and L. Khaykovich

PRL 108, 210406 (2012)
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The Static Response - Inelastic Reactions

• The response of an A-particle system is closely related to the static moments
of the charge density

ρ(x) =
A∑
i

Ziδ(x− ri)

• The Fourier Transform

ρ(q) =

∫
dxρ(x)eiq·x =

A∑
i

Zie
iq·ri

• In the long wavelength limit q −→ 0

• For a system of identical particles

• Conclusion A: In general the Dipole is the leading term.

• Conclusion B: For identical particles the leading terms are R̂2 and Q̂.
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Photo Reactions with Cold-Atoms

• For RF photons in the MHz region the wave length
is meters so qR� 1.

• The Atoms reside in a strong magnetic field, thus
spins are “frozen”

|Ψ0〉 = Φ0(ri)|m1
Fm

2
F . . .m

A
F 〉

• In the final state the photon can either change one of
the spins or leave them untouched.

• Spin-flip reaction

|m1
Fm

2
F . . .m

A
F 〉 −→ |m

1
Fm

2
F ± 1 . . .mAF 〉

• Frozen-Spin reaction

|m1
Fm

2
F . . .m

A
F 〉 −→ |m

1
Fm

2
F . . .m

A
F 〉
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Photo Reactions with Cold-Atoms

• For Spin-flip reactions we get the ”Fermi” operator

R(ω) = Ck

∫∑
f,λ

∣∣〈Φf |Φ0〉
∣∣2 δ(Ef − E0 − ω)

• For Frozen-Spin reactions we get a sum of the
monopole operator M̂ = R2 =

∑
r2i and the

Quadrupole operator Q̂ =
∑
r2i Y2(r̂i)

O = αM̂ + βQ̂

• The response is given by

R(ω) = k5
∫∑
f,λ

∣∣〈Φf |O|Φ0〉
∣∣2 δ(Ef − E0 − ω)
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Photoassociation of The Atomic Dimer

• For the dimer case the response function can be written as

R(ω) = Cω5

[
1

62
|〈ϕ0(q)‖M̂‖ψ0〉|2 +

1

5 · 152
|〈ϕ2(q)‖Q̂‖ψ0〉|2

]

• Where the G.S. wave function is given by

ψ0 = Y0
√

2κe−κr/r ; κ ≈ 1/as

• The continuum state is given by ϕ`(q) = Y`(r̂)χ`(r)/r

χ`(r) = 2qr[cos δ`j`(qr)− sin δ`n`(qr)]

• The ` = 0 matrix element

|〈ϕ0(q)‖M̂‖ψ0〉|2 =
1

4π

(
4q
√

2κ

(q2 + κ2)3

)2 [
cos δ0(3κ2 − q2)− sin δ0

κ

q
(3q2 − κ2)

]2
• The ` = 2 matrix element, assuming δ2 = 0

|〈ϕ2(q)‖Q̂‖ψ0〉|2 =
5

4π

[
16q3
√

2κ

(q2 + κ2)3

]2
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Photoassociation of The Atomic Dimer

The s-wave and d-wave
components in the
response function

• upper panel
a/reff = 2

• lower pannel
a/reff = 200

• red - r2 monopole

• blue - quadrupole

0.0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2 2.5 3

N
or

m
al

iz
ed

tr
an

si
ti

on
M

.E
.[

n.
d.

]

q/κ [n.d.]

0.0

0.2

0.4

0.6

0.8

1.0



Theoretical Considerations Nuclear Physics Ultra Cold Atoms Multipole Expansion Sum Rules Conclusions

Photoassociation rates

Photoassociation of 7Li
atoms
as = 1000a0
T = 5µK (lower panel), T = 25µK
(upper panel)

red - r2 monopole, blue - quadrupole
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Photoassociation of The Atomic Dimer

Comparison to the Khaykovich group data
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• The fitted values of as and T are in reasonable agreement with the estimates
of the experimental group.

• Effect of RF field on dimers not included.

• Finite time effect

• Disagreement are due to 3-body (4-body?) association.

• Effects of δ2 6= 0 are negligible.
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The Atomic Trimer

The quadrupole response of the bosonic
trimer
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Photodisintegration Sum Rules

Sn ≡
∫ ∞
ωth

dω ωnR(ω)

The sum rule Sn

• Exists if R(ω) −→ 0 faster than ω−n−1.

• Can be expressed as GS observable utilizing the closure of the eigenstates of
H.

S1 = 〈0| [O, [H,O]] |0〉 = 〈0|O (H − E0) O|0〉
S0 = 〈0|OO|0〉

S−1 = 〈0|O
1

H − E0
O|0〉
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Naive Scaling

• Using simple dimensional arguments we expect that

r ∼ 1/
√
E

• The Quadrupole operator behaves as r2 so

R(ω) ∼ r4/E ∼ 1/E3

• It follows that the sum rules should fulfill

Sn ∼ 1/E2−n

• or
S0 ∼ 1/E2

S−1 ∼ 1/E3

S0/S−1 ∼ E
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Calculated Sum Rules
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Fitted lines

S−1 = A−1E
−2.13

S0 = A0E
−1.34

S1 = A1E
−0.55



Theoretical Considerations Nuclear Physics Ultra Cold Atoms Multipole Expansion Sum Rules Conclusions

Naive scaling doesn’t work !!!

A For S1 we got a power of 0.55
instead of 1.

B For S0 we got a power of 1.33
instead of 2.

C For S−1 we got a power of 2.13
instead of 3.

D The ration Sn/Sn−1 ∼ E0.8 instead
of Sn/Sn−1 ∼ E.

E The results seems to be independent
of the short range specifications of
the potential.
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Summary and Conclusions

1. The new RF experiments in Cold-Atoms systems carry much in common with
photo-reactions and charged current reactions in nuclei.

2. For spin-flip reaction a Fermi type operator is the leading contribution to the
cross-section, and R(ω) ∝ ω.

3. For frozen-spin reactions the monopole R2 and the Quadrupole are the
leading terms, and R(ω) ∝ ω5.

4. We have studied Dimer formation and found that the reaction mechanism
change from monopole to quadrupole with increasing gas temprature.

5. We have studied the Quadrupole response of a bosonic trimer near threshold.

6. We have seen that the response function diverge as E3 −→ 0.

7. The sum-rules S1, S0, S−1 diverge as well.

8. We note that the divergence pattern of the sum-rules doesn’t follow the
simple dimensional analysis.
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