$n-\alpha$ neutrino pair bremsstrahlung processes in supernovae

Rishi Sharma

July 26, 2013

(in progress with Sonia Bacca and Achim Schwenk)

Type II supernovae

- ▶ Neutrino production and scattering processes determine the initial spectra. Oscillations then modify it *Fuller*, *Duan*, *Raffelt*, *Carlson*, *Chen*, ...
- ▶ Neutrinos may also play a role in the revival of the stalled shock *Colgate*, *White* (1960), *Wilson* (1985)

u near the proto-neutron star

- \blacktriangleright Most of the gravitational energy $\sim 3\times 10^{53} ergs$ taken away by the neutrinos
- ► This is a robust prediction of supernova theory and the neutrino spectrum is an important observable
- Immediately after the collapse neutrinos come from a thin region near the surface of the proto-neutron star – the neutrino sphere

Neutrino production processes

- Pair $e^+ + e^- \rightarrow \nu + \bar{\nu}$
- Photo $e^{\pm} + \gamma^* \rightarrow e^{\pm} + \nu + \bar{\nu}$
- ▶ Plasma $\gamma^* \rightarrow \nu + \bar{\nu}$
- ► Brems $(n,p) \rightarrow (n,p) + \nu + \bar{\nu}$

Prakash et. al. (Review 2004)

Temperature versus *r*

Effects of nuclei on neutrinos

- \blacktriangleright We are looking at processes just after collapse. The temperature $\lesssim 15 \text{MeV}$
- For the propagation through the crust, the relevant distance is 9-12km from the centre
- ▶ In this region, there are light nuclei like deuteron, triton, and helium. We focus on Helium

Nuclei near the neutrinosphere

(Arcones et. al.)

Effects

(A. Mezzacappa (2007))

$\nu\bar{\nu}$ bremsstrahlung production

Bremsstrahlung matrix element

▶ The matrix element is given by

$$i\mathcal{M} = \frac{iG_F}{\sqrt{2}} \frac{C_A}{q^0} I^i \chi_4^{\dagger} [\sigma^i, T(k)] \chi_2$$

- Proportional to the commutator of the Tmatrix with the Pauli matrices
- The T matrix can be obtained from the phase shifts for different angular momentum phase shifts

$$\begin{split} T(\sigma', p'; \sigma, p) &\sim \sum_{j,l,m_j,m_l,m} Y_{lm'}(\hat{p}') Y_{lm'}(\hat{p}) \\ c((s, m'_s)(l, m'_l)|(jm_j)ls) c((s, m_s)(l, m_l)|(jm_j)ls) \frac{-1}{2\pi i} (e^{2i\delta_{l,j}(E)} - 1) \end{split}$$

A comparison of the phase shifts

- ▶ Below threshold from *Arndt and Roper*
- ▶ Above threshold from *Amos et. al.*
- ▶ A prominent $p_{3/2}$ resonance at $\sim 0.9 \text{MeV}$ leads to large phase shifts for $n\alpha$

Comparing $|[T(k), \sigma^i]|^2$

- ightharpoonup Comparing nlpha and OPE
- ► Take p_i to be in the \hat{z} direction and p_f in the $(1/2, 1/2, 1/\sqrt{2})$ direction
- ightharpoonup Convergence as a function of j is good

Bremsstrahlung contribution, comparing nn and $n\alpha$

- At low momenta, $n-\alpha$ scattering matrix is comparable or larger than n-n scattering from one pion exchange
- ▶ On the other hand the density of α is a factor of 50 100 smaller than n

$$\epsilon_{
uar{
u}} \sim \int \Pi d^3p_i d^3q_j rac{1}{e^{-e_1+\mu}+1} rac{1}{e^{-e_2+\mu}+1} rac{1}{e^{e_3-\mu}+1} rac{1}{e^{e_4-\mu}+1} \ |M|^2 \delta(p^\mu)(q^0_
u+q^0_{ar{
u}})$$

▶ Near the neutrino sphere, the Boltzmann limit may be sufficient *Bacca et. al. (2012)*

A comparison of the emissivities

A comparison of the emissivities

A comparison of the emissivities

Conclusions

- At low temperatures, $n\alpha$, $\nu\bar{\nu}$ bremsstrahlung can compete with nn bremsstrahlung
- Can it affect the $\nu_{\mu,\tau}$ spectrum or $\bar{\nu}$ spectrum at low momenta?
 - ► Can it affect the dynamical evolution of the neutron star?

A comparison of the $T(^{2S+1}(L_f, L_i)_j)$ matrix

A prominent $p_{3/2}$ resonance at $\sim 0.9 \text{MeV}$ leads to large phase shifts for $n\alpha$

Effect on the neutrinosphere

(Arcones et. al.)