

35 Years of the Main Cyclotron

(That 70's Show) from my perspective Ewart Blackmore

2004

Ewart Blackmore

- 1963-1967 Graduate Student, UBC Supervisor John Warren "Low energy reactions 3He (3He, 2p)4He and T(3He, pn)4He" using the 3 MeV UBC Van der Graaf and Chalk River Tandem *Coffee table discussions on next accelerator for UBC*
- 1967-1969 Post doc at Rutherford Lab, UK Particle physics – Kaon leptonic decays Measurement of H⁻ EM dissociation for the TRIUMF cyclotron design
- 1969-1972 TRIUMF Centre Region Cyclotron
 1973-1975 Cyclotron inflector and probes/diagnostics
 1975-1980 Assistant Director for Initial Operations
 1981 Sabbatical at LAMPF in pion physics
 1981-2008 Division Head Experimental Facilities / Accelerator
 Technology /Engineering
 1995-2006 Coordinated Canada's contribution to the LHC at CERN

Electric Dissociation of H⁻ in 1968

NUCLEAR INSTRUMENTS AND METHODS 74 (1969) 333-341; © NORTH-HOLLAND PUBLIS

Consequences

- increase in cyclotron by 4%
- 20 scale model \rightarrow 20.8 model
- peak field 5.76 kG
- confirmed in 1976 with TRIUMF beam

TRIUMF Cyclotron

- 500 MeV, 100 μ A, H⁻ ions
- simultaneous extraction 2 beams
- cost \$8.4M in 1968

(1972)	TRIUMF(110)	UBC			
Chief Eng	'r Joop Burgerjo	n			
Magnet:	Al Otter Ed Auld				
Beam	George Mackenzie Mike Craddock				
Dynamics	: Gerardo Dutto				
	Corrie Kost				
RF:	Roger Poirier	Karl Erdman			
	Milos Zach				
Vacuum:	Dennis Healey	Dave Axen			
ISIS:	Peter Bosman	Bruce White			
Probes:	Bruno Duelli (EV	VB)			
Controls:	Don Heywood	Dick Johnson			
	Dave Gurd	Ken Dawson (UofA)			
Safety;	lan Thorson	Brian Pate (SFU)			
	Gary Wait	4			
CRC:	Ewart Blackmore)			

Centre Region Cyclotron

- 80 ton magnet
- 8 resonators with flux guides
- 300 keV ion source 0.5 mA
- + 3 MeV in 6.5 turns, 100 μA

Centre Region Layout

5

Prototype Testing

- ion source, injection system
- inflector and centre region
- resonators and rf amplifier
- probes and diagnostics
- controls

Centre Region Cyclotron

Inflector/Deflector

first beam to full energy October 1972

Achieved/Learned

- intensity to 100 µA June 1973
- resonators too sensitive to temperature
- correction plates required
- beam dynamics understood
- ISIS, inflector and probes design
- fabricator identified (EBCO Industries)

First six turns of beam

Magnet

- fabrication and assembly went well (1972)
- 4000 tons of steel in 50 ton shipments
- first field maps-centre field too high by 100 g
- difference in steel permeability 0.5" vs 5"
- required gouging out 16 tons of steel
- field tolerance of 1 g required (1 in 4000)
- took ~ 9 months of shimming/measurements
- delays gave other groups time to be ready

Field mapping using flip coils

Radiofrequency System

- 80 resonators, 1.8 MW 23 MHz
- installation and alignment
- water connections, rf contacts

(1974 - 1980) RF early operations

- outgassing and hydrogen pumping
- water leaks and vibrations
- rf contact damage, strongback temp.
- centre region electrodes melting
- frequency tuning temp. and press.
- damage to diagnostic probes
- resonator strongback sagging

(1990-1992) Resonator replacement

• 24 new resonators installed -stiffer
(2000-present) RF Amplifier refurbish

Beam Dynamics

- large magnet, low field, large gap \rightarrow weak focusing
- low ΔE /turn \rightarrow many turns, tight tolerance on mag field, isochronism and vertical centring
- high intensity \rightarrow space charge, large phase acceptance

Ion Source & Injection

- \bullet high intensity \rightarrow reliability and filament lifetime
- polarized source polarization and intensity
- 40 m long injection line, cyclotron fringe field, reproducibility
- inflector HV reliability at high current

Safety and Remote Handling

- understanding beam losses in cyclotron and minimizing
- system reliability inside cyclotron
- improved remote handling capability for routine and more complicated tasks
- beam lines, target areas, TNF etc

Fig. 2. Microampere-hours per year and residual activity in the cyclotron since first beam.

<u>mA-hrs</u>	<u>Dose mSv</u>	
322 (88%)	474	
490 (90%)	267	
687 (92%)	307 (ISAC)	10
	<u>mA-hrs</u> 322 (88%) 490 (90%) 687 (92%)	mA-hrsDose mSv322 (88%)474490 (90%)267687 (92%)307 (ISAC)

Cyclotron Commissioning

Reg at the controls

Milestones

Injected beamNovember 17, 1974500 MeVDecember 15, 1974100 μAJuly 1977 (beam dump)

The "Commissioning Team"Don HeywoodReg RichardsonDave GurdGeorge MackenzieCorrie KostEwart BlackmoreGerardo DuttoMilos Zachmissing Mike Craddock

First Beam December 15, 1974

			Maximum Radius of Beam	Energy (if centred)
Nov.	17		42 in.	6 MeV
Nov.	18		55 in.	10 MeV
			(Radiation in vault!)	
			85 in.	24 MeV
			Replaced low-energy probe	
Nov.	22		150 in.	71 MeV
Nov.	23		183 in.	113 MeV
			Replaced B-20 cryogenerator	
Nov.	25		179 in.	109 MeV
			Vacuum problems	
Nov.	26		195 in.	135 MeV
			Deflector sparking	
Nov.	27		223 in.	195 MeV
Nov.	28		231 in.	210 MeV
			Check $v_z^2 = 0.02$ at R=223in.	
Dec.	1		259 in.	295 MeV
Dec.	3		265 in.	315 MeV
			Beam appears to be centred	
			300 kV supply in ISIS kaput	
Dec.	11		Trying to re-establish beam	
			RF problems	
Dec.	12		273 in.	345 MeV
			Sparking in ISIS	
Dec.	14		278 in.	363 MeV
Dec.	15	12:10	278 in.	363 MeV
		13:07	309 in.	500 MeV

PROGRESS ACHIEVED f ISA DEC. 7.9 IS NA @ 500 MeV RF @ - 92 EV AT EXTERNAL DUMP IN VAULT 10 NA CONGRATULATIONS TO YOU ALL.

Cyclotron Operations and Beam Delivery

IEEE Transactions on Nuclear Science, Vol.NS-22, No.3, June 1975

PRODUCTION OF SIMULTANEOUS, VARIABLE ENERGY BEAMS FROM THE TRIUMF CYCLOTRON

J. Reginald Richardson*, E.W. Blackmore, G. Dutto, C.J. Kost, G.H. Mackenzie, TRIUMF and M.K. Craddock Physics Department, University of British Columbia, Vancouver, B.C.

Specification (1972) 2 beams – 100, 10 μA 180-520 MeV **Achieved (today)** 3(4) beams BL1A -120 μA 500 MeV BL2A -100 μA 500 MeV BL2C -70 μA 100 MeV

Fig. 71. Beam charge delivered (broken line) and hours of operation (solid line) over the past several years. Milestones in extracted peak current are also indicated. The histogram shows the charge delivered per month.

Experimental Areas & Beamlines

Planned layout 1970

Experimental Areas & Beamlines

Proton Hall

Basque Experiment - 1975

MRS Spectrometer 1976¹⁵

Experimental Areas & Beamlines

Meson Hall

T2 target M9, M20, M8 (1975)

TNF Beam Dump (1977)

TRIUMF Cyclotron (1974-2009) "A Success Story"

Real Advantages

- simultaneous beams, variable energy & intensity
- reliability after initial teething problems
- versatility in meeting science demands

Real Surprises

- delivers 3x more beam than originally specified
- has lasted 35 years and still going strong
- nuclear physics (original motivation) particle physics material sciences isotope production (TR series of cyclotrons) medical applications ISAC (nuclear physics)

Thank You ! Merci !

Probes and Beam Diagnostics

