The role of continuum and threenucleon forces in neutron rich nuclei.

Gaute Hagen (ORNL)

Collaborators:

Morten Hjorth-Jensen (UiO/CMA) Gustav Jansen (UT/ORNL) Ruprecht Machleidt (UI) Thomas Papenbrock (UT/ORNL)

TRIUMF Seminar Vancouver, February 13 2013

Outline

- 1. Interactions from chiral EFT, open quantum systems and Coupled-Cluster theory
- 2. Evolution of shell structure in neutron rich calcium isotopes Is ⁵⁴Ca a magic nucleus?
- 3. Role of continuum and three-nucleon forces in neutron rich oxygen and fluorine isotopes
- 4. Proton elastic scattering of ⁴⁰Ca using CC
- 5. Computing scattering obersvables from a finite Harmonic oscillator basis

Roadmap for Theory of Nuclei

Main goal:

To arrive at at comprehensive description of all nuclei and low-energy reactions from the basic interactions between the constituent nucleons

What are the relevant degrees of freedom?

Effective
field theory
provides us
with a
systematic
link between
quarks and
gluons and
nuclei.

Three-nucleon forces as in-medium corrections to nucleonnucleon forces

Including the effects of 3NFs (approximation!)

[J.W. Holt, Kaiser, Weise, PRC 79, 054331 (2009); Hebeler & Schwenk, PRC 82, 014314 (2010)]

Parameters: For Oxygen we use $k_F = 1.05$ fm⁻¹, $c_E = 0.71$, $c_D = -0.2$ from binding energies of 16,22 O, for Calcium we use $k_F = 0.95$ fm⁻¹, $c_E = 0.735$, $c_D = -0.2$ from binding energy of 40 Ca and 48 Ca (The parameters c_D , c_E differ from values proposed for light nuclei)

Physics of nuclei at the edges of stability

Coupled-cluster method (in CCSD approximation)

Ansatz:
$$|\Psi\rangle = e^T |\Phi\rangle$$

$$T = T_1 + T_2 + \dots$$

$$T_1 = \sum_{ia} t_i^a a_a^{\dagger} a_i$$

$$T_2 = \sum_{ijab} t_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_j a_i$$

- Scales gently (polynomial) with increasing problem size o²u⁴.
- Truncation is the only approximation.
- © Size extensive (error scales with A)
- (a) Most efficient for doubly magic nuclei

Correlations are exponentiated 1p-1h and 2p-2h excitations. Part of np-nh excitations included!

$$a,b,\dots \Longrightarrow \Longrightarrow$$

Coupled cluster equations
$$E = \langle \Phi | \overline{H} | \Phi \rangle$$

$$E = \langle \Phi | \overline{H} | \Phi \rangle$$

$$0 = \langle \Phi_i^a | \overline{H} | \Phi \rangle$$

$$0 = \langle \Phi_{ij}^{ab} | \overline{H} | \Phi \rangle$$

Alternative view: CCSD generates similarity $0 = \langle \Phi_i^a | \overline{H} | \Phi \rangle$ | transformed Hamiltonian with no 1p-1h and $0 = \langle \Phi_{ij}^{ab} | \overline{H} | \Phi \rangle$ no 2p-2h excitations.

$$\overline{H} \equiv e^{-T}He^{T} = (He^{T})_{c} = (H + HT_{1} + HT_{2} + \frac{1}{2}HT_{1}^{2} + \dots)_{c}$$

Evolution of shell structure in neutron rich Calcium

- How do shell closures and magic numbers evolve towards the dripline?
- Is the naïve shell model picture valid at the neutron dripline?

- 3NFs are responsible for shell closure in 48Ca
- Different models give conflicting result for shell closure in ⁵⁴Ca.
 - J. D. Holt et al, J. Phys. G **39**, 085111 (2012)

Evolution of shell structure in neutron rich Calcium Inversion of shell order in ⁶⁰Ca

Evolution of shell structure in neutron rich Calcium

- Relativistic mean-field show no shell gap in ⁶⁰⁻⁷⁰Ca
- Bunching of singleparticle orbitals
- large deformations and no shell closure
- J. Meng et al, Phys. Rev.C 65, 041302(R) (2002)

How many protons and neutrons can be bound in a nucleus?

Literature: 5,000-12,000

Skyrme-DFT: 6,900±500_{syst}

Description of observables and model-based extrapolation

- Systematic errors (due to incorrect assumptions/poor modeling)
- Statistical errors (optimization and numerical errors)

Erler et al., Nature 486, 509 (2012)

Calcium isotopes from chiral interactions

Main Features:

- Total binding energies agree well with experimental masses.
- 2. Masses for ⁴⁰⁻⁵²Ca are converged in 19 major shells.
- 3. ⁶⁰Ca is not magic
- 4. ⁶¹⁻⁶²Ca are located right at threshold.

See also:

Meng et al PRC 65, 041302 (2002), Lenzi et al PRC 82, 054301 (2010) and Erler et al, Nature 486, 509 (2012)

A peninsula of weak stability?

G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, T. Papenbrock, Phys. Rev. Lett. 109, 032502 (2012).

Is ⁵⁴Ca a magic nucleus? (Is N=34 a magic number?)

Main Features:

- Good agreement between theory and experiment.
- 2. Shell closure in ⁴⁸Ca due to effects of 3NFs
- 3. Predict weak (sub-)shell closure in ⁵⁴Ca.

Measurement at RIKEN (Japan) agrees with theoretical prediction.

Hagen, Hjorth-Jensen, Jansen, Machleidt, T. Papenbrock, Phys. Rev. Lett. 109, 032502 (2012).

	⁴⁸ Ca			⁵² Ca			⁵⁴ Ca		
2+	4+	4+/2+	2+	4+	4+/2+	2 ⁺	4+	4+/2+	
3.58	4.20	1.17	2.19	3.95	1.80	1.89	4.46	2.36	
3.83	4.50	1.17	2.56	?	?	?	?	?	

CC Exp

Spectra and shell evolution in Calcium isotopes

- 1. Inversion of the 9/2+ and 5/2+ resonant states in 53,55,61Ca
- 2. We find the ground state of ⁶¹Ca to be ½+ located right at threshold.
- 3. A harmonic oscillator basis gives the naïve shell model ordering of states.

Continuum coupling is crucial!

	⁴⁸ Ca	$^{52}\mathrm{Ca}$	⁵⁴ Ca
$E_{2^+}(CC)$	3.58	2.19	1.89
$E_{2^+}(\mathrm{Exp})$	3.83	2.56	n.a.
$E_{4^+}/E_{2^+}(CC)$	1.17	1.80	2.36
$E_{4^+}/E_{2^+}(\text{Exp})$	1.17	n.a.	n.a.
$S_n(CC)$	9.45	6.59	4.59
$S_n(\mathrm{Exp})$	9.95	6.0*	4.0^{\dagger}

New penning trap measurement of masses of ^{51,52}Ca A. T. Gallant et al Phys. Rev. Lett. **109**, 032506 (2012)

	$^{53}\mathrm{Ca}$		$^{55}\mathrm{Ca}$		$^{61}\mathrm{Ca}$	
J^{π}	Re[E]	Γ	Re[E]	Γ	Re[E]	Γ
$5/2^{+}$	1.99	1.97	1.63	1.33	1.14	0.62
$9/2^{+}$	4.75	0.28	4.43	0.23	2.19	0.02

Is ²⁸O a bound nucleus?

Experimental situation

- "Last" stable oxygen isotope ²⁴O
- ^{25,26}O unstable (Hoffman et al 2008, Lunderberg et al 2012)
- ²⁸O not seen in experiments
- ³¹F exists (adding on proton shifts drip line by 6 neutrons!?)

Continuum shell model with **HBUSD** interaction predict ²⁸O unbound. A. Volya and V. Zelevinsky PRL (2005)

Shell model (sd shell) with monopole corrections based on threenucleon force predicts 2nd O as last stable isotope of oxygen. [Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL (2010), arXiv:0908.2607]

Oxygen isotopes from chiral interactions

- 1. Effective 3NF place dripline at ²⁵O.
- Odd-even staggering is well reproduced.
- 3. ²⁶O unbound by ~100keV, Lunderberg et al., Phys. Rev. Lett. 108 (2012) 142503
- 4. ²⁸O unbound, with a width of ~2MeV

G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, T. Papenbrock, Phys. Rev. Lett. 108, 242501 (2012).

Resonances in neutron rich oxygen-24

C. R. Hoffman et al Phys. Rev. C 83, 031303(R) (2011)

- Knockout reaction of ²⁶F reveal a resonance above the two-neutron threshold in ²⁴O
- No spin and parity assigned of this state
- A challenge for microscopic theory to address these states

Oxygen isotopes from chiral interactions

The effects of threenucleon forces decompress the spectra and brings it in good agreement with experiment.

We find several states (4+,3+,2+) near the observed peak at ~7.5MeV in ²⁴O C. R. Hoffman et al Phys. Rev. C **83**, 031303 (2011)

J^{π}	2_1^+	11+	4_{1}^{+}	3_{1}^{+}	2_{2}^{+}	1_{2}^{+}
$E_{\rm CC}$	4.56	5.2	6.2	6.9	7.0	8.4
$E_{\rm Exp}$	4.7(1)	5.33(10)				
$\Gamma_{ m CC}$	0.03	0.04	0.005	0.01	0.04	0.56
Γ_{Exp}	$0.05^{+0.21}_{-0.05}$	$0.03^{+0.12}_{-0.03}$		ş		

Hagen, Hjorth-Jensen, Jansen, Machleidt, T. Papenbrock, Phys. Rev. Lett. 108, 242501 (2012).

Computing open-shell Fluorine-26

Experimental spectra in ²⁶F compared with phenomenological USD shell-model calculations and coupled-cluster calculations

A. Lepailleur et al, accepted for publication in PRL(2012)

Elastic proton/neutron scattering on 40Ca

The one-nucleon overlap function: $O_A^{A+1}(lj;kr) = \sum_n \left\langle A+1 \mid \tilde{a}_{nlj}^\dagger \mid A \right\rangle \phi_{nlj}(r).$

Beyond the range of the nuclear interaction the overlap functions take the form:

$$O_A^{A+1}(lj;kr) = C_{lj} \frac{W_{-\eta,l+1/2}(kr)}{r}, k = i\kappa$$

 $O_A^{A+1}(lj;kr) = C_{lj} [F_{\ell,\eta}(kr) - \tan \delta_l(k) G_{\ell,\eta}(kr)]$

Elastic proton/neutron scattering on 40Ca

Differential cross section for elastic proton scattering on ⁴⁰Ca.

Fair agreement between theory and experiment for low-energy scattering.

G. Hagen and N. Michel Phys. Rev. C **86**, 021602(R) (2012).

What is the infrared cutoff in harmonic oscillator expansions?

boundary conditions at L_0 , L_0 , L_2

Furnstahl, Hagen, Papenbrock,

PRC 86, 031301 (2012)

A finite Harmonic oscillator basis expansion effectively imposes box boundary conditions at L. Candidates for the infrared cutoff L:

$$L_0 = \sqrt{2(N+3/2)}b$$

$$L'_0 = L_0 + 0.54437b(L_0/b)^{-1/3}$$

$$L_2 = \sqrt{2(N+3/2+2)}b$$

The energy with Dirichlet boundary conditions at L:

$$E(L) = E_{\infty} + Ae^{-2k_{\infty}L} + \mathcal{O}(e^{-4k_{\infty}L})$$

 L_0

-0.6-0.8-1.01.5 2.0 2.5 3.0

Solving a two-body problem exactly we can by inspection determine which infrared cutoff is favored.

Correct IR

cutoff

Clearly L₂ is the right choice!

S. N. More et al, to be published (2013)

Numerical and analytical derivation of L₂

- For s-waves the lowest eigenvalue k_0 of k^2 in a box of size L is π/L
- The lowest eigenvalue of k² in a finite HO basis is to a good approximation given by π/L_2
- A finite HO basis imposes a Dirichlet boundary conditions approximately at L_2 , it can be shown to be exact for N>>1

	alagorializing it and for each t
	solve for
	$j_l(k_iL)$ =
	For increasing HO basis size, tl
	boundary L approaches L ₂ over
	range of energies.
5	
1	

N	κ_{min}	π/L_2	π/L_0
0	1.2247	1.1874	1.8138
2	0.9586	0.9472	1.1874
4	0.8163	0.8112	0.9472
6	0.7236	0.7207	0.8112
8	0.6568	0.6551	0.7207
10	0.6058	0.6046	0.6551
12	0.5651	0.5642	0.6046
14	0.5316	0.5310	0.5642
16	0.5035	0.5031	0.5310
18	0.4795	0.4791	0.5031
20	0.4585	0.4582	0.4791

We can determine the exact box boundary L for a finite HO basis expansion, by diagonalizing k² and for each discrete k_i

$$j_l(k_i L) = 0$$

he box er a large

Phaseshifts from a finite Harmonic Oscillator basis

- Diagonalize k² in a given finite localized basis such as the Harmonic Oscillator.
- Determine the infrared cutoff or box boundary L as a function of energy by solving the i'th root of $j_l(k_iL)=0$
- Diagonalize the full Hamiltonian in the given finite basis and obtain the phase shifts
 from

$$\tan \delta(k_i) = \frac{j_l(k_i L)}{n_l(k_i L)}$$

Summary

- 1. Interactions from Chiral EFT probed in nuclei
- 2. CC calculations for oxygen and calcium with effects of 3NF and continuum give significant improvement in binding energy and spectra.
- 3. Predict weak sub-shell closure in ⁵⁴Ca.
- 4. Level ordering in the *gds* shell in neutron calcium is reversed compared to naïve shell model.
- 5. Predict spin and parity of newly observed resonance peak in ²⁴O.
- 6. Elastic proton scattering on medium mass nuclei from coupled-cluster theory
- 7. Phaseshifts from finite harmonic oscillator bases

Treatment of long-range Coulomb effects

We write the Coulomb interaction

$$V_{\text{Coul}} = U_{\text{Coul}}(r) + [V_{\text{Coul}} - U_{\text{Coul}}(r)]$$

Demanding

$$U_{\text{Coul}}(r) \longrightarrow (Z-1)e^2/r \text{ for } r \to +\infty$$

The second term is short range and can be Expanded in Harmonic Oscillator basis. The first term contain the long range Coulomb part:

		s_1	/2	d_3	3/2	d_5	/2
N_R	N_T	Re[E]	Γ	Re[E]	Γ	Re[E]	Γ
5	15	1.1054	0.1446	5.0832	1.3519	1.4923	0.0038
5	20	1.1033	0.1483	5.0785	1.3525	1.4873	0.0079
10	25	1.0989	0.1360	5.0765	1.3525	1.4858	0.0093
10	30	1.0986	0.1366	5.0757	1.3529	1.4849	0.0103
15	40	1.0978	0.1351	5.0749	1.3531	1.4842	0.0111
15	50	1.0978	0.1353	5.0746	1.3533	1.4838	0.0114
20	60	1.0976	0.1349	5.0745	1.3533	1.4837	0.0116
30	70	1.0975	0.1346	5.0744	1.3534	1.4837	0.0117
(Mic	chel 2011)	1.0975	0.1346	5.0744	1.3535	1.4836	0.0119

$$U_{\text{Coul}}(k, k') = \langle k | U_{\text{Coul}}(r) - \frac{(Z-1)e^2}{r} | k' \rangle + \frac{(Z-1)e^2}{\pi} Q_{\ell} \left(\frac{k^2 + k'^2}{2kk'} \right)$$

We diagonalize the one-body shcrodinger equation in momentum space using the off-diagonal method

N. Michel Phys. Rev. C 83, 034325 (2011)

Evolution of the 3/2+ and 1/2+ states in Potassium

- 1. We reproduce level inversion in ⁴⁷K and get ½+ as the ground state.
- 2. We predict 3/2+ for the ground state in 51,53,59K.

 $\frac{1}{2}$ state with respect to $\frac{3}{2}$ state in $\frac{39}{6}$ K and $\frac{47}{6}$ K.

 39 K 47 K

Jπ	E(CC)	E(Exp)	E(CC)	E(Exp)
3/2+	0.00	0.00	0.00	0.00
1/2+	4.097	2.52	-0.636	-0.36