A Decade of Radioactive Beams at ISAC Reflecting on ISAC's 10 Year History First Beam (^{36m}K) – November 1998

> John M. D'Auria Simon Fraser University

- ➤ What is ISAC?
- > What is its place in the World?
- ➢ How Did It Start?
- Science in the First 10 Years?
- > What Does the Future Hold?
- Concluding Remarks?

What is ISAC?

Latest generation of an on-line isotope separator (ISOL)

Elemental selectivity based upon the Target and Ion Source; Mass selectivity based upon Mass Analyzer

Chemistry and Physics

Coupling of an ISOL with a post-accelerator to produce energetic RB (essentially the first in the world)

ISAC @ TRIUMF

Target material for beam production includes SiC, CaO, TiC, U (UO and UC license) Ion sources: surface, laser, FEBIAD, ECR (test)

ISAC:

Highest power for On-Line facilities, presently up to 100µA @ 500MeV DC proton

ISAC has 3 exper. areas:

- Low energy (< 60keV)
- ISAC I (150 keV/u –1.8 MeV/u)
- ISAC II (up to 16MeV/u, presently being upgraded)
- Suite of experimental stations:
- TRINAT, Beta-NMR, 8pi, tapestation, TITAN, Co-linear laser spec, polarised beam line, etc
- DRAGON, TUDA, TACTIC, GPS,
- TIGRESS (8/12),
- EMMA (2011),
- HERACLES

Some Beam Intensities @ Yield Station

⁸ Li	(Ta)	8 x 10 ⁸ pps
¹¹ Li	(Ta)	4 x 10 ⁴ pps
²¹ Na	(SiC)	9.9 x 10 ⁹ pps
^{26g} Al	(SiC)	1 x 10 ¹⁰ pps
⁷⁴ Rb	(Nb)	1.3 x 10 ⁴ pps
⁷⁹ Rb	(Nb)	4.6 x 10 ⁹ pps
¹⁶⁰ Yb	(Ta)	8.4 x 10 ⁹ pps

World of Radioactive Beams Facilities

ISAC presently produces highest intensity RB in world (for selected beams)

How did it start? (Pre-ISAC Highlights)

- 1951 First on-line ISOL (Niels Bohr Inst.)
- 1969–present ISOLDE (CERN)
- '60-80's- Various ISOL facilities (OSIRIS, ISOCEL, TRISTAN, UNISOR, ...)
- ~1970's John Warren suggests an ISOL on BL1;
- ~1980's Proposal to move TRISTAN to BL4A
- 1985 Proposal to TRIUMF BOM

Conferences at Mount Gabriel and Parksville

• 1986–1999 TISOL (R&D and Production RB facility)

(Mini Workshops at Lake Harrison (WEISS), and Lake Louise

- 1995 ISAC Funding (and Construction starts)
- 1998 First beam (^{38m}K) to TRINAT

1951: First ISOL beams at NBI O. K Hansen and K.O. Nielsen

Figure 3. The Copenhagen isotope separator.

How did it start? (Pre-ISAC Highlights)

- 1951 First on-line ISOL (Niels Bohr Inst.)
- 1969–present ISOLDE (CERN)
- '60-80's- Various ISOL facilities (OSIRIS, ISOCEL, TRISTAN, UNISOR, ...)
- ~1970's John Warren suggests an ISOL on BL1;
- ~1980's Proposal to move TRISTAN to BL4A
- 1985 Proposal to TRIUMF BOM

Conferences at Mount Gabriel and Parksville

- 1986–1999 TISOL (R&D and Production RB facility) (Mini Workshops at Lake Harrison (WEISS), and Lake Louise
- 1995 ISAC Funding (and Construction starts)
- 1998 First beam (^{38m}K) to TRINAT

TRI-85-1

PROCEEDINGS OF THE ACCELERATED RADIOACTIVE BEAMS WORKSHOP

> PARKSVILLE, CANADA September 5-7, 1985

Editors: L. Buchmann, University of Toronto J.M. D'Auria, Simon Fraser University

- Organized by: C.A. Barnes, California Institute of Technology L. Buchmann, University of Toronto J.M. D'Auria, Simon Fraser University C. Rolfs, Universität Münster
- Sponsored by: Natural Sciences and Engineering Research Council of Canada National Science Foundation (U.S.A.) Deutsche Forschungsgemeinschaft (West Germany) TRILUMF Simon Fraser University

Key Players:

- R. Azuma-UToronto J.K.P. Lee McGill J. Crawford, McGill R. Moore, McGill C. Rolfs, Munster J. King, UToronto L. Buchmann, UT
- J. D'Auria, SFU

How did it start? (Pre-ISAC Highlights)

- 1951 First on-line ISOL (Niels Bohr Inst.)
- 1969–present ISOLDE (CERN)
- '60-80's- Various ISOL facilities (OSIRIS, ISOCEL, TRISTAN, UNISOR, ...)
- ~1970's John Warren suggests an ISOL on BL1;
- ~1980's Proposal to move TRISTAN to BL4A
- 1985 Proposal to TRIUMF BOM

Conferences at Mount Gabriel and Parksville

• 1986–1999 TISOL (R&D and Production RB facility)

(Mini Workshops at Lake Harrison (WEISS), and Lake Louise

- 1995 ISAC Funding (and Construction starts)
- 1998 First beam (^{38m}K) to TRINAT

How did it start? (Pre-ISAC Highlights)

- 1951 First on-line ISOL (Niels Bohr Inst.)
- 1969–present ISOLDE (CERN)
- '60-80's- Various ISOL facilities (OSIRIS, ISOCEL, TRISTAN, UNISOR, ...)
- ~1970's John Warren suggests an ISOL on BL1;
- ~1980's Proposal to move TRISTAN to BL4A
- 1985 Proposal to TRIUMF BOM

Conferences at Mount Gabriel and Parksville

- 1986–1999 TISOL (R&D and Production RB facility)
- 1995 ISAC Funding (and Construction starts)
- 1998 First beam (^{38m}K) to TRINAT

ISAC Isotope Separator/Accelerator

ISAC will accelerate radioactive isotopes to high velocities, a capability which will allow scientists to replicate reactions which occur in stars in the distant universe, and to study nuclear structure, the behavior of unusual atomic nuclei, condensed matter physics and life sciences projects. This is recognized worldwide as leading edge research and will place Canada back in the forefront of nuclear physics. The world physics community wanted ISAC, and Canada was in a unique position to develop it because TRIUMF can use the high power proton beam from the existing TRIUMF cyclotron to produce the copious beams of exotic, short-lived radioisotopes needed for the ISAC facility.

- 1 ISAC ground breaking, April 1996
- 2 Installing first shielding in the target hall
- 3 Aerial view of TRIUMF
- 4 ISAC building from the southeast
- 5 Early construction phase of the target hall
- 6 Beam line 2A transports the proton beam from the TRIUMF cyclotron to the target in the new ISAC facility
- 7 Installing the Radio Frequency Quadrupole tank
- 8 Tunnel construction from the cyclotron to the ISAC Facility
- 9 Completed ISAC building, February 1998

ISAC Technical Highlights

(First 10 Years since First Beam)

Major Milestone

(ignoring infrastructure construction)

- 1998^{***} First RB beam (38m K) to TRINAT;
- 1998/9 LEBT from OLIS to RFQ; RFQ full power
- 2000 First physics (⁷⁴Rb lifetime with high precision)

(R. Boyd experiment??)

- 2001 Accelerated beam of ²¹Na to TUDA and DRAGON
- 2003 TITAN and TIGRESS Funded; ISAC II bldg. opened
- 2004 Laser ion source used for exp.; CSB tested;^{26g}Al beam found; high power target developed
- 2005 ⁴He beam in single ISAC II module
- $2006 {}^{40}$ Ca beam accelerated to 5.5 MeV/u in ISAC II
- 2007 Energetic ¹¹Li beam delivered to Maya Experiment in ISAC II

*** Remember funding in 1995 (built on budget and on schedule)

Challenges and Achievements

- RFQ LINAC (Room temperature, low frequency, 150 keV 1.8 MeV/u)
- High power targets (Handling up to 5 kWatts)
- Thin ISOL targets to allow fast release of very short isotopes
- Selection of ion sources (surface, FEBIAD, LASER, ECR?)
- Unique shielding and remote handling (using cranes not robots)
- Professional Operations (as compared to older ISOL facilities)
- Proper Remote Control Systems (EPICS based)
- Excellent collection of world class, experimental facilities
- Fixed beam scheduling (Unlike HRIBF, NSCL, others?)
- OLIS (almost forgotten initially)

Scientific Highlights (First 10 Years)

Science at ISAC The First 10 Years

- Nuclear Astrophysics
 - DRAGON
 - TUDA
 - DAT
- Fundamental Physics
 - TRINAT
 - Precision Lifetime Measurements
- Condensed Matter Physics
 - Beta NMR and Polarized ⁸Li
 - low field beta-NMR and zero field beta-NQR
- Nuclear Structure
 - The 8π (and peripheral detector arrays)
 - TIGRESS
 - Halo Nuclei Experiments
 - MAYA experiment
- Nuclear Masses
 - TITAN (CPT??)

Nuclear Astrophysics

DRAGON TUDA DTM

Thanks to Witek Nazarewicz, U. Tennessee/ Greg Hackman

ISAC - Poised to Measure Nuclear Astrophysics

DRAGON

C. Ruiz

Detector of Recoils and Gammas of Nuclear Reactions

Direct measurement of radiative capture reactions at (explosive) stellar energies, in inverse kinematics

- MEME design
- Windowless recirculating target: H₂ or He
- LN2 zeolite cleaning trap
- 1-10 mbar
- 30-element BGO gamma array;40-70% efficiency

Combination of RB + RFQ + DRAGON is unique in world

DRAGON Program Summary

- 5 radiative capture reactions measured directly using RIBs in last 20 years (world).
 4 in last 8 years: 3 using DRAGON
- Textbook RIB measurement: ²¹Na(p,γ)²²Mg for ²²Na synthesis in O-Ne novae All contributing resonances measured to high precision: reaction rate completely determined experimentally; *most intense* (~10⁹/s) ²¹Na RIB in world.
- New cascade transition in ¹²C(α,γ)¹⁶O
 DRAGON sensitive to transitions unobserved in other experiments
- First inverse kinematics measurement of ^{26g}Al(p,γ)²⁷Si, highest intensity (~10⁹/s) ^{26g}Al beam in world
- Direct measurement of ⁴⁰Ca(α,γ)⁴⁴Ti in inverse kinematics for supernova ⁴⁴Ti production, *best measurement* so far
- > *First direct measurement* of ${}^{23}Mg(p,\gamma){}^{24}AI$ reaction using *most intense* ${}^{23}Mg$ RIB
- > Production of Target of ²²Na to perform (p,γ) for ²²Na synthesis in O-Ne novae

The ${}^{21}Na(p,\gamma){}^{22}Mg$ reaction

A.F. Iyudin et al, Astron. Astrophys. 300, 422 (1995)

- 21Na(p, γ)²²Mg bypass for ²¹Na(β^+)²¹Ne(p, γ)²²Na route
- Stronger ²¹Na(p,γ)²²Mg means ²²Na destroyed quicker
- Ejected ²²Na abundance strongly dependent
- Predicted abundance in O-Ne novae ~6 x 10⁻⁹ solar masses
- ²²Na: prospect of observation from single nearby (< 1kpc)* nova
- No observation by COMPTEL (Nova Her 1991 ~3kpc, Nova Cyg 1992 ~2kpc)
- INTEGRAL slightly more sensitive
- When observation comes, need accurate ²²Na ejected yield estimations

APS DNP Fall Meeting

RESULTS

Phys. Rev. Lett. 90, 16 (2003) Phys. Rev. C 69, 065803 (2004)

Level structure ²²Mg

Conclusions on ${}^{21}Na(p,\gamma){}^{22}Mg$ direct measurement

- ²¹Na beam 'easy'; prolific from spallation in SiC, readily ionizeable in rhenium
- Pure beam (no isobars)
- Primary beam radioactive and intense: normalization via elastic scattering and beta monitor sufficient
- Dominant experimental background: primary beam decay shielding & high thresholds required
- High intensity makes thick target excitation functions possible in reasonable time
- Rate determined to +/- 20% precision
- 'Classic' DRAGON experiment

Spinoff: DRAGON measurement of E_R =206 keV ²¹Na(p, γ)²²Mg resonance revealed a 6 keV discrepancy in the reaction Q-value, traced to the mass of ²²Mg

This has since been corroborated by re-evaluation: J. Hardy, Phys. Rev. Lett. 91 (2003)

⁴⁰Ca(α,γ)⁴⁴Ti at DRAGON ⁴⁴Ti: youngest indicator of nucleosynthesis

60-year half-life, observed in Cas A, SN1987A

⁴⁴Ti produced by ⁴⁰Ca(α ,γ)⁴⁴Ti in 'alpha-rich freeze-out'

Large discrepancy between previous experiments

DRAGON measurement

40% increase of ⁴⁴Ti yield compared to empirical model (Rauscher *et al.* 2000)

DRAGON measured uncertainty of the reaction rate = +/-3% in ⁴⁴Ti yield

⁴⁴Ti yield and a ⁴⁴Ti/ ⁵⁶Ni ratio agree better with observations in Cas A and SN1987A. [cf. Nassar *et al.*, *Phys. Rev. Lett.* 96 (2006)]

Measurement of the ${}^{40}Ca(\alpha, \gamma){}^{44}Ti$ reaction relevant for supernova nucleosynthesis

C. Vockenhuber,^{1,*} C.O. Ouellet,² L.-S. The,³ L. Buchmann,¹ J. Caggiano,¹ A.A. Chen,² H. Crawford,¹ J.M. D'Auria,⁴ B. Davids,¹ L. Fogarty,¹ D. Frekers,⁵ A. Hussein,⁶ D.A. Hutcheon,¹ W. Kutschera,⁷ A.M. Laird,⁸ R. Lewis,⁸ E. O'Connor,¹ D. Ottewell,¹ M. Paul,⁹ M.M. Pavan,¹ J. Pearson,² C. Ruiz,¹ G. Ruprecht,¹ M. Trinczek,¹ B. Wales,² and A. Wallner⁷

TUDA/TACTIC: charged particle reactions

- TUDA (TRIUMF-UK Detector Array): direct charged particle reactions or indirect techniques (resonant elastic scattering)
- 5 RIB experiments:
 - ²¹Na(p,p)²¹Na resonant elastic scattering
 - ²⁰Na(p,p)²⁰Na resonant elastic scattering
 - ¹⁸F(p, α)¹⁵O direct , ¹⁸F(p,p)¹⁸F res.
 - 21 Na(p, α)¹⁸Ne indirect (XRB)
 - ⁷Li(⁸Li,⁷Li)⁸Li ANC indirect (S₁₇(0) test of IMS)

TACTIC

(TRIUMF Annular Chamber for Tracking and Identification of Charged Particles

 $^{8}\text{Li}(\alpha,n)^{11}\text{B}$ for BBN and r-process

 $^7\text{Li}(^3\text{He},\alpha)^6\text{Li}$ for BBN

First operation 2008

Group leader: L. Buchmann

Indirect techniques: Doppler Shift Lifetime Facility

S. Mythili, B. Davids et al. Phys. Rev. C

R. Kanungo et al. Phys. Rev. C. 74

77 (2008)

(2007)

- Populate excited states of interest to measure lifetimes using Doppler Shift Attenuation Method (at ISAC I or ISAC II)
- Use of TIGRESS detectors
- Custom chamber and implanted targets
- ${}^{15}O(\alpha,\gamma){}^{19}Ne$ and ${}^{14}N(p,\gamma){}^{15}O$ studied indirectly in this way

Group Leader: Barry Davids

Fundamental Physics Symmetries

TRINAT Superallowed Beta Decay

Physics justification:

Nuclear Beta Decay

TRINAT TRIUMF's Neutral Atom Trap

- Isotope/Isomer selective
- \bullet Evade 1000x untrapped atom background by \rightarrow 2nd MOT
- 75% transfer (must avoid backgrounds!); 10⁻³ capture
- 0.7 mm cloud for β -Ar⁺ $\rightarrow \nu$ momentum $\rightarrow \beta$ - ν correlation

TRIUMF Neutral Atom Trap

The pressure of laser light traps atoms of unstable isotopes in a 1mm-sized cloud.

The final atoms after decay have small kinetic energies (~100 eV) but freely escape the trap so we can measure their momentum. In 'beta decay' we measure the electron and atom momentum and deduce the (otherwise invisible) neutrino momentum.

SAC ion beam

TRINAT Results and Impact

TRIUMF Neutral atom trap: β decay correlations

- Upgrades in progress, goals 5-10 X better:
 - ^{38m}K β - ν correlation: Gorelov PRL 2005, best general limits on scalars coupling to 1st generation • ³⁷K : ν spin asymmetry Melconian PLB 2007 B_{ν}/BSM_{ν} = 0.982 ± 0.026 ± 0.017

 Singles recoil spin asymmetry ⁸⁰Rb Pitcairn PRC 2009 A_{recoil}=0.015±0.029±0.019 Complementary constraints on tensor interactions

590

goals: scalar, tensor interactions from SUSY produce \sim 0.001 effects (Profumo, Ramsey-Musolf, Tulin PRD 2007) Searching for exotic massive particles in 2-body decay

John Behr

Precision Lifetime Measurements at ISAC Beta-decay tape station

4 π gas-proportional β counter setup

G. Ball

Superallowed Beta Decay/Precision Lifetime Measurements

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

 The CKM matrix plays a central role in the Standard Model describes the mixing of different quark generations:
 weak interaction eigenstates ≠ quark mass eigenstates

$$\left| d' \right\rangle = V_{ud} \left| d \right\rangle + V_{us} \left| s \right\rangle + V_{ub} \left| b \right\rangle$$

- In the Standard Model the CKM describes
- a unitary transformation.

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$$

 $\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$

The first row of the CKM matrix provides the most demanding experimental test of this unitarity condition.

For the special case of $0^+ \rightarrow 0^+$ (pure Fermi) β decays between isobaric analogue states (superallowed) the matrix element is that of an isospin ladder operator:

 $|M_{fi}|^2 = (T - T_Z)(T + T_Z + 1) = 2$ (for T=1)

Strategy: Measure superallowed ft-values, deduce G_V and V_{ud} :

Vector coupling
$$\longrightarrow G_V^2 = \frac{K}{2 \text{ ft}}$$
 $|V_{ud}| = G_V / G_F \leftarrow \text{Fermi coupling constant}$

Superallowed Fermi β Decays

Nuclear Structure

- Halo Nuclei Studies

The 8π at TRIUMF

- 20 25% HPGe w/ Suppressors
- Endless loop moving tape system (LSU)
- Programmable states (beam on/off, tape move, trigger veto)
- Inner plastic scintillator array,
- Options: Si(Li), BaF₂
- For ¹⁹Ne:
 - Plastics for lifetime
 - HPGe for branching ratio

TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS):

Four ~40% n-type HPGe crystals close-packed in a four-leaf clover geometry.
32-fold segmentation of the outer contacts provide position resolution.
Even more powerful when combined with auxiliary detectors.
University of Guelph, McMaster University, Université de Montréal, University of Toronto, Université Laval, Simon Fraser University, and TRIUMF

TIGRESS Ge Gamma Array and SHARC Silicon barrel

Halo Nuclei (radius>> $r_0 A^{1/3}$)

Nuclear halos

Selected Recent Publications on Halo Nuclei Experiments at TRIUMF-ISAC

- ¹¹Li β-n-DSAM : F. Sarazin *et al.*, Phys. Rev. C 70, 031302R (2004), and C. Mattoon et al., PRC 80, 034318 (2009) [*CSM*]
- □ ¹¹Li β-n: Y. Hirayama *et al.*, Phys. Lett. B611, 239 (2005) [Osaka]
- □ ¹¹Li charge radius: R. Sanchez *et al.*, PRL 96, 033002 (2006) [*GSI, U. Tübignen*]
- □ ¹¹Li β-charged particle: R. Raabe *et al.*, PRL 101, 212501 (2008) [*K.U.Leuven*]
- ¹¹Li two-neutron transfer (p,t): Tanihata, Savajols *et a*l, PRL 100, 192502 (2008) [GANIL,Osaka]
- □ ^{9,11}Li mass: M. Smith *et al.*, PRL 101, 202501 (2008)
- □ ⁸He mass: V. Rykov *et al.*, PRL 101, 202301 (2008)
- □ ¹¹Be mass: R. Ringle *et al.*, PLB 675, 170 (2009)

The Maya Experiments

- 1. The p(¹¹Li,⁹Li)t reaction at 3 MeV/u
 - First study at ISAC 2
 - Large international group
 - time projection chamber from GANIL
 - Studying correlations between halo n
 - 2500-5000 pps of ¹¹Li on target
 - transitions to gs and 1st ex state

FIG. 1. (Color online) A schematic drawing of the MAYA detector. The ¹¹Li beam is incident from the left, and ionization electrons drift down to the anode wires. Projections of the charged particles trajectories are recorded on the honeycomb segmented cathode. Escaping particles hit the backside Si + CsI wall.

- 2. Mass of Li from the p,t reaction
 - mass derived from the Q value of the p,t reaction
 - Q value of 8.119(22) MeV
 - S_{2n} = 363(22) MeV consistent
 with results from TITAN and MISTRAL

Nuclear Masses

TITAN mass measurement system

Jens Dilling

Strange form of matter: Halo nuclei an 'old' phenomena, but new methods at ISAC

11

Halo mass measurements: ¹¹Li

- TITAN mass measurement of ^{6,7,8,9,11}Li
- Improved precision, S_{2n} improved by factor 7
- Shortest-lived isotope (T_{1/2}=8.8ms) for Penning trap mass measurement!
- Final analysis δm = 650 eV
- M. Smith et al PRL 101, 202501 (2008)
- Re-evaluation of radius, and comparison to theory

TITAN Masses – K Isotopes

• ⁴⁴K⁴⁺: First on-line mass measurement using charged bred ions from the EBIT

• ⁴⁷⁻⁵⁰K¹⁺ and ^{49,50}Ca¹⁺: masses improved by factor of up to 100

• ${}^{48}K^{1+}$ and ${}^{49}K^{1+}$: deviations of 6 and 10 σ from AME03

Condensed Matter Physics

- Coupling of use of radioactive beams (nuclear) for Material science
- (Otto Hauser brought Rob Kiefl to the table at Traps Workshop)
- Presently uses ⁸Li (and ⁹Li) beams, 10⁹/s (could use other beams also)
- Remember T_{1/2}(⁸Li) = 838 ms !!!
- 30-60 keV,
- Polarized !!!
- Sample on HV platform to tune implantation depth
- Adjust temperature, B fields, RF
- Now there are 2 experimental stations
 - High field beta-NMR
 - Low field beta-NMR and zero field beta-NQR
- Detect ⁸Li beta asymmetry
- Ideal for senstive probing of thin films
- Connects with μ SR studies (very large user group)
- Brings many users to ISAC also

β -NMR Spectrometers at ISAC

Electrostatic deceleration is used to control the depth of the implanted ions (2-500nm)

β-NMR Spectrometers at ISAC

Polarizer

Thin Film Ag on Nb Superconductor

10

12

Frequency (kHz)

14

•Thin Ag film on Nb surface Exhibits "Proximity Effect" Superconductivity

•G. D. Morris, W.A. MacFarlane, R. Keifl

Fig. 1: Left: Resonance from ⁸Li in Ag above and below the critical temperature T_{cNS} of the Ag(40nm)Nb(300nm) bilayer. Right: Resonance peak value versus temperature showing the diamagnetic shift below T_{cNS} in Ag.

Temperature (K)

16

Measurement of the quadrupole moment of ⁹Li and ¹¹Li

Future for ISAC

EMMA, the ElectroMagnetic Mass Analyser

1 m

Recoil Mass Spectrometer for ISAC-II Project Leader: Barry Davids Length = 9 m; 1st order mass resolving power = 500 Solid angle: $\pm 4^{\circ}$ by $\pm 4^{\circ} = 20$ msr M/q acceptance = $\pm 4\%$; Energy acceptance = $\pm 20\%$ Heavy recoil tagging in fusion-evaporation and transfer reaction spectroscopy Applications: nuclear astrophysics and exotic nuclear structure Commissioning in 2011

Probing the Transition to the Island of Inversion TIGRESS & SHARC (C. Diget et al.)

At ISAC2 we will use the <u>isotone</u> of ²⁴Ne namely ²⁵Na as the projectile.

We aim to <u>test the modifications to USD</u> that have been used to reproduce the raised d3/2 level seen in ²⁵Ne, by measuring the <u>p-n coupling states</u> in ²⁶Na.

The experiment will use 10⁶ pps ²⁵Na at 5.00 MeV/u.

The future site map of TRIUMF

Proposal:

•BL4N is proposed to deliver 500-MeV protons to two actinide target stations for beam production

•Take advantage of the shielded and unused proton hall to add a 50-MeV electron driver to supply electrons to the new target area via a separate beamline

•Develop new ISAC front end to permit three simultaneous RIB beams (two accelerated)

•E-linac CFI funded (awaiting matching funds)

The People (some)

Alan Astbury, Alan Shotter and Erich Vogt Paul Schmor Marik Dombsky – ISOL Targetry Pierre Bricault- ISOL ion sources and other components Lothar Buchmann (w Dick Azuma, Jim King) – Reactions with RB for Astrophysics Jack Beveridge – Shielding and initial layout Harvey Schneider (and Bob Laxdal and PB) – RFQ and LINAC Otto Hauser (and Peter Jackson and John Behr) – TRINAT Dave Hutcheon – DRAGON (Technical aspects) Gordon Ball – Nuclear Structure and, and, and Rob Kiefl (Phil Levy,Gerald Morris)–Condensed Matter (with polarized ⁸Li) Jean Michel Poutissou – Science leadership and beam scheduling

Newer group Jens Lassen Jens Dilling Chris Ruiz Barry Davids Carl Svenson (and Greg Hackman and Paul Garrett) Matt Pearson

Entire TRIUMF staff (Engineers, Remote Handling Group, Technicians, Machinists, Draftspersons and Designers, etc...)

Concluding Remarks

- ISAC is now a world class facility for nuclear astrophysics, nuclear structure studies, fundamental symmetries and condensed matter physics;
- Window of opportunity before FRIB, FAIR and others;
- Needs constant development of new radioactive and stable heavy ion beams and with higher intensities;
- First class training ground for students and post-docs;
- Bright future with existing world class, unique facilities;
- Exciting forward looking 5 year plan;
- BUT, should not lose sight of what got it here:

- an excellent scientific, technical and professional staff (dedicated, open, cooperative, loyal, good will, creative)

End of Slides

FRIB at MSU

SPIRAL 2

E-linac: MW-class Superconducting Electron Accelerator at TRIUMF

- A MW-class electron linac is a driver for photofission with rates up to 10¹⁴ fissions/sec.
- The present e-linac design concept, based on 1.3 GHz SRF CW operation, offers flexibility, possibility for expansion to other applications (Free Electron Laser, Energy Recovery Linac).

Design parameters: 50 MeV, 10 mA, CW operation.

β -NMR probes phase changes

- Observed solar abundances of Cd/In/Pd, Hf/Ta/W not compatible with nuclear shell model!
- Quenching shell gaps in calculations gives answer closer to abundances
 21Na Matrix R

21Na Matrix Elements: First TIGRESS RIB

- Isotope shift measurements: ToPLiS collaboration @ ISAC measured laser frequency shifts for the lithium isotopes
- G. W. Drake (Windsor) PRL. 100, 243002 (2008) atomic theory calculations for the mass shifts => extract the charge radius
- Isotope shift = modification of electron binding energy =Mass Shift (mass effect) + Field shift (finite size of nucleus)

ISAC: The First 10 Years

- What is ISAC
- What is its place in the World
- How did it start
 - Proposal in 1985
 - TISOL (10 year for learning)
 - Key Studies at TISOL
 - Buiding the facility
 - Remote Handling and Shielding
 - The Target and Beam Production
 - Key Components
 - The RFQ Accelerator
 - The High Resolution Mass Anayzer
 - ISAC II
- Science in the First 10 Years
 - Nuclear Astrophysics
 - DRAGON
 - TUDA
 - Other studies (Ne)
 - Fundamental Physics
 - TRINAT
 - Superallowed Beta Decay
 - Condensed Matter Physics
 - Beta NMR and Polarized ⁸Li
 - Nuclear Physics and Structure
 - The 8 Pi
 - TITAN
 - TIGRESS
 - Li11 Charge Distribution
- What does the future hold?
- Concluding remarks (people, creativity, good will and cooperation)

Planned Experimental Facilities and Beams

- EMMA
- TIGRESS (Completed)
- Actinide Targets (on a regular basis) TRINAT and FrPNC Radon EDM r-process masses for astrophysics
- Second Production Target System including e-LINAC

The TRIUMF-ISAC Radioactive Beams Facility

- ISAC I Project proposed in 1985; funded in 1995 (5 year plan)
- RB Production by the ISOL Method (500 MeV p⁺)
- RB Accelerated using LINACS (0.15 1.5 MeV/u): ISAC I
- Two ISAC 1 Experimental Areas (LEBT and HEBT)
- ISAC II funded in 2000;
- Major Technical Milestones
 - 1998 First RB beam (^{38m}K) to TRINAT
 - 2000 First physics (⁷⁴Rb lifetime with high precision)
 - 2001 TUDA and DRAGON perform RB experiments;²¹Na
 - 2002 8π and β -NMR perform physics
 - 2003 TITAN and TIGRESS Funded; ISAC II bldg. opened
 - 2004 ECR used for exp.; CSB tested; ²⁶Al beam;
 - (high power target, ¹¹Li; laser ion source)
 - $-200X {}^{26g}Al exp.$, ${}^{11}Li CSD done$, + many other exps.

Radioactive Beams at TRIUMF-ISAC The ISOL Method

- 500 MeV protons onto thick target
- Spallation, fragmentation, (fission) reactions
- Have used Nb, Ta, SiC, TiC, CaO, CaZrO₃, (ZrC)
- Intensities up to 150 μ A possible (now 100 μ A)
- Products diffuse out at high temperatures
- Species ionized in heated surface and laser ion sources; ECR (2004, revised 2008); FEBIAD(2006)
- Beams delivered to ISAC II (2006-7)
- Successfully tested uranium (actinide) target 2008

Some Beam Intensities at Yield Station

⁸ Li	(Ta)	8 x 10 ⁸ pps
¹¹ Li	(Ta)	4 x 10 ⁴ pps
²¹ Na	(SiC)	9.9 x 10 ⁹ pps
^{26g} Al	(SiC)	1 x 10 ¹⁰ pps
⁷⁴ Rb	(Nb)	1.3 x 10 ⁴ pps
⁷⁹ Rb	(Nb)	4.6 x 10 ⁹ pps
¹⁶⁰ Yb	(Ta)	8.4 x 10 ⁹ pps

M. Dombsky TRIUMF www.triumf.ca/people/marik/