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Abstract

Recent theoretical studies have shown that three-nucleon forces are important for understand-
ing neutron-rich nuclei, and for the formation of nuclear shell structure. In particular, theory
can not reproduce the N = 28 magic number in 48Ca using two-body interactions. This magic
number is only reproduced with the inclusion of three-nucleon forces. Further along the cal-
cium isotopic chain, the three-nucleon interaction predicts new magic numbers at N = 32 and
34, while calculations with phenomenological interactions predict a magic number at N = 32,
but disagree on the magicity of N = 34. An other theoretical tool that has been under significant
pressure since the advent of precision mass measurements is the isobaric multiplet mass equa-
tion, in which the binding energies of states in an isobaric multiplet should vary quadratically
with the z-projection of the isospin. This is a consequence of the isospin dependent com-
ponent of the nuclear Hamiltonian and Coulomb interactions. We test the predictions of phe-
nomenological and three-nucleon interactions through mass measurements of 20,21Mg, 51,52Ca,
and 51K with the TITAN Penning trap mass spectrometer. The measured mass excesses were
ME(20Mg)= 17477.7(18) keV, ME(21Mg)= 10903.85(74) keV, ME(51Ca)= 36339(23) keV,
ME(52Ca) = 34245(61) keV, and ME(51K) = 22516(13) keV. With the calcium and potassium
mass measurements, we show that the calculations with three-nucleon forces are able to cor-
rectly predict the two-neutron separation energies. In the A = 20 and 21 isobaric multiplets,
neither the phenomenological nor the three-nucleon based interactions are able to reproduce
the measured behaviour.
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Chapter 1

Introduction

Atomic masses are fundamental quantites that provides important insight into the inner work-
ings of the nuclear interaction through the binding energy, or the difference between the sum
of the mass of the constituents and the mass of the whole. Not only is the atomic mass crucial
in understanding nuclear physics, it is also required for studying astrophysics, determining the
origin of nuclei heavier than iron in the universe, and in weak-interaction studies. Figure 1.1
summarizes our current knowledge of the limits of existence of atomic nuclei. The nuclides in
black are stable against decay, having infinite half-lives, while the nuclides in yellow are unsta-
ble against decay, decaying by emitting either β -particles (electrons or positrons), α-particles
or by spontaneous fission. Currently there are 288 known stable nuclides, and approximately
3000 known unstable nuclides, while there are predicted to be ≈ 7000 bound nuclei with pro-
ton number less than 120 [1]. The path along the stable nuclides in figure 1.1 is known as
the “valley of stability”. Moving away from stability by adding either protons or neutrons,
one eventually reaches the proton or neutron driplines. The driplines are defined to be the
point where the separation energy, the energy required to remove a nucleon from the nucleus,
changes from positive to negative. As seen in figure 1.1, the predicted two-neutron driplines,
for most of the nuclear chart, lie far beyond the current limits of experimental knowledge.

Since the discovery of the nucleus, many seemingly contradictory models have been suc-
cessfully used to describe nuclear structure. The earliest models considered the nucleus to be
a “liquid drop”, in which protons and neutrons only interact with their nearest neighbours. As
figure 1.2 shows, this can be seen in the nearly constant binding energy per nucleon for the
stable nuclides. While this model was able to describe several features of nuclei, such as gen-
eral binding energies and fission energies of heavy nuclei, it was unable to describe the high
binding energies of light nuclei, and the stability of nuclei with specific numbers of protons
and neutrons. A slight improvement on this model is the cluster model, in which clusters of
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Figure 1.1: Sergè chart showing the location of known stable nuclides (black) and un-
stable nuclides (yellow). Also shown are theoretical calculations [1] giving the
predicted location of the two-proton and two-neutron driplines. The dashed lines
are the “magic numbers” (section 1.1).

nucleons inside the nucleus would generally bind as α-particles; however, again, this cluster
model does not describe the entirety of known nuclear properties. Many of these problems
were resolved with the introduction of the nuclear shell model, in which individual nucleons
move in a mean field and is analogous to the shell model in atomic physics.

A pressing question in nuclear physics is how the behaviour of the nuclear interaction
changes as one moves away from the stable nuclei. In particular, it is important to investigate,
both experimentally and theoretically, how nuclear structure, or the properties of individual nu-
clei, varies towards the driplines. In this thesis precision mass measurements were performed,
and the results are compared to shell model calculations.

1.1 The shell model
The atomic nucleus is a complex many-body quantum system, and its understanding has been
an active field of research for more than a century. Atomic nuclei are composed of two nearly
identical constituent nucleons: protons and neutrons. Their relative mass difference is only
≈ 0.14% [2], both are Fermions, and have spins and parities of Jπ = 1/2+. The largest dif-
ference between them is their charge—the proton being positively charged q = +1e, and the
neutron being neutral, where e is the charge of the electron. The aim of nuclear physics is
to understand the interactions between quarks and gluons to form neutrons and protons, and
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Figure 1.2: Nuclear binding energy per nucleon for the stable nuclides.

from there to describe the interaction between ensembles of nucleons, ultimately connecting
these to the fundamental interactions in the Standard Model of particle physics. The nuclear
problem occupies an interesting space, as, except in the lightest nuclei, there are too many
particles to calculate exact results from first principles, but, even for the heaviest nuclei, there
are not enough particles for a purely statistical approach [3]. The nuclear shell model is used
to describe the region of nuclei that lie between these two extremes, as a mean central potential
is formed through the mutual interaction between the nucleons, but only the valence nucleons,
the nucleons near the Fermi surface, play an active role in determining nuclear structure and
properties: structure such as shape (is the nucleus spherical, prolate or oblate), and properties
such as the spins, parities, and half-lives of the ground and excited states.

One early approach to solving the nuclear problem was the independent particle model [4],
in which nucleons move in a mean attractive potential well with no interactions with other
nucleons. The Hamiltonian is formed by a spin-independent central potential plus a spin-orbit
potential and an orbit-orbit term,

H(r) =−V0 +T +
1
2

mω
2r2−VSO~̀ ·~s−VB~̀

2, (1.1)

where V0 is the central depth of the potential (typically≈−51 MeV), T is the kinetic energy of
the nucleon, VSO is the spin-orbit potential which can depend on r or derivatives of the central

3
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potential, and VB is the orbit-orbit potential. A harmonic oscillator (HO) basis is often used
in nuclear theory, as it greatly simplifies the mathematics involved; however, quite often large
sets of basis states are needed to accurately describe nuclear wavefunctions. The spin-orbit
potential is similar to the spin-orbit coupling of electrons in the atomic potential, but in nuclei
the coupling is much stronger and has an opposite sign to the atomic case. Further, while the
spin-orbit potential in atomic systems arise from the magnetic field generated by the movement
of the electron, the spin-orbit term in atomic nuclei is a property of the strong force and is not
of a magnetic origin.

The energy levels of a three-dimensional harmonic oscillator in spherical coordinates are
E = h̄ω(N + 3/2) = h̄ω(2n+ `+ 3/2), where N = 2n+ ` is the major quantum number, n is
the radial quantum number, and ` is the angular momentum quantum number. For even-N,
only even `-values are allowed, and for odd-N, only odd-` values are allowed. As a result each
major shell alternates the parity of the angular momentum wavefunction. The orbit-orbit term
breaks the degeneracy of the harmonic oscillator; however the states can still be grouped by
their major oscillator number. The shift in energy is given by VB`(`+1). The spin-orbit term
further breaks the degeneracy in the energy levels, splitting each state depending on the total
angular momentum. The energy splitting is given by the expectation value of ~̀ ·~s, which can
be found using the total angular momentum

j2 = (~̀+~s)2 = `2 + s2 +2~̀ ·~s. (1.2)

This leads to a spin-orbit energy shift of

E(SO) =−Vso

2
( j( j+1)− `(`+1)− s(s+1)) . (1.3)

States with higher j are lowered in energy, while states with lower j are raised in energy.

Figure 1.3: (Continued on following page) Single particle energies in the shell model.
The left column shows the harmonic oscillator levels, the second column shows the
effect of the orbit-orbit VB`(`+ 1) term, the third column shows the effect of the
spin-orbit Vso~̀ ·~s term, and the last column shows the energy levels for a Woods-
Saxon potential suitable for 208Pb, calculated with the program wspot [5]. Only
bound states are shown. The states are labelled n` j, where n is the radial quantum
number, `, the angular momentum quantum number, is labelled s, p,d, f ,g,h, i for
` = 0,1,2,3,4,5,6, and j is the total angular momentum ~l +~s. The numbers in
brackets denotes the maximum occupation for a given orbit. The magic numbers
are also labelled.
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r

VHrL

ΡHrL
HaL HbL

Figure 1.4: (a) Schematic plot of the Woods-Saxon potential, and density, for 208Pb. (b)
Top: Experimentally extracted density profile for 208Pb. Bottom: Central Woods-
Saxon potential during the calculation. Figure (b) reproduced with permission from
[6].

Instead of a harmonic oscillator potential, there are several other central potentials that can
be used. A commonly used potential is the Woods-Saxon potential [7] with the form

V (r) =
−V0

1+ exp((r−R)/a)
(1.4)

where R is the mean radius of the nucleus, and a is the mean skin thickness, typically chosen
to be R = 1.25A1/3 fm and a = 0.524 fm. A Woods-Saxon form is quite natural, as it is a close
approximation to the same form that the nuclear density takes. As seen in figure 1.4, this is
confirmed by the measurement of the charge density in 208Pb through the use of elastic electron
scattering [6].

The ordering of the states depends on the values chosen for Vso and VB, as well as on the
form of the central potential, evidenced by the re-arrangement of states between the HO and
Woods-Saxon calculations. An interesting side-effect of the spin-orbit force is that states from
different major oscillators mix with each other. For example, in figure 1.3 the N = 4, 0g9/2 state
becomes part of the group of states made up from the N = 3, p and f states. Including these
states in large-scale shell model calculations can be important in reproducing experiments [8,
9, 10].

As seen in figure 1.3, the spin-orbit term gives rise to the so-called nuclear “magic num-
bers” [11, 12]. The nuclear magic numbers are conceptually similar to the atomic closed shell
numbers, in which elements having large first ionization potentials are non-reactive. These
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Figure 1.5: Two neutron separation energies near N = 28. The region in red shows the
Wigner energy along N = Z, while the blue region shows the magic number at
N = 28. Data from [14].

elements are called the noble gases. Because of these similarities, this model of the nucleus
is called the shell model. Experiments had found that certain nuclei with neutron N or pro-
ton Z numbers of N,Z = 2,8,20,28,50,82 and N = 126 were significantly more tightly bound
than their neighbours. For example, nuclei with N = 50 or 82 exhibit higher natural chemical
abundances than could be explained by the existing models [13]. At Z = 50, the chemical
element tin shows the most number of stable isotopes with a total of 11. Further, there are 6
stable nuclei with N = 50 and 7 with N = 82. Oxygen-16, a “doubly” magic nucleus with 8
protons and 8 neutrons, requires 15.6 MeV of energy to remove one neutron, while 17O, with
one additional neutron, requires only 4.1 MeV of energy to remove one neutron.

The enhanced binding near the magic numbers can be seen in systematic studies of the
binding energy BE

BE(N,Z) = ZmHc2 +Nmnc2−M(N,Z)c2 (1.5)

where mH and mn are the masses of hydrogen and the neutron, respectively, M(N,Z) is the
atomic mass of a nuclide, and c is the speed of light. The observed behaviour of the nu-
clear binding energy changes at the magic numbers, hence differences—or derivatives—of the
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Figure 1.6: ∆n surface. The neutron magic numbers are clearly seen as bright vertical
bands. Areas of deformation can be seen near (N,Z) = (60,40) and (90,62). Data
from [14].

binding energy highlights these areas. Two commonly used differences are the two-neutron
separation energy S2n

S2n(N,Z) = BE(N,Z)−BE(N−2,Z), (1.6)

which is the energy required to remove two neutrons from a nucleus, and the empirical neutron
shell gap ∆n [15]

∆n = S2n(N,Z)−S2n(N +2,Z), (1.7)

which is similar to a second derivative of the binding energies. In fact, regions of interesting
underlying nuclear structure, can be seen at the S2n or ∆n surfaces shown in figures 1.5 and 1.6,
respectively. In the ∆n surface, some of the clearly seen features include:

• the conventional neutron magic numbers, which appear as bright vertical bands due to
sudden changes the the amount of binding when crossing a magic number,

• the N = Z line, where increased binding occurs due to the Wigner energy [16],

• the disappearance of the N = 20 and 28 magic numbers near the proton numbers Z = 12

8



1.2. PRECISION POTENTIALS AND THE NEED FOR THREE-BODY FORCES

and 16 (near the nuclides 32Mg and 40Mg as seen by the disapperance of the bright
vertical bands,

• regions of deformation near (N,Z) = (60,40) and (90,62), as evidenced by a negative
(black) ∆n,

• and the appearance of ‘new’ magic numbers at N = 16 and N = 32 near Z = 8 and Z = 20
as evidenced by the appearance of bright bands,

The independent particle model of the nucleus has been confirmed by many experiments.
The results of electron induced knock-out reactions of protons from 206,208Pb confirms the
expected ordering, spacing, and occupancy of the orbitals [17, 18]. In the (d, p) transfer reac-
tion on 132Sn [19] the single-particle nature of the states in 133Sn were confirmed. Both 208Pb
and 132Sn are doubly magic nuclei, thus, nuclei near doubly magic nuclei obey the indepen-
dent particle model. However, as already seen in the ∆n surface, there are regions with large
neutron-to-proton ratios where the standard magic numbers seem to vanish. Thus, a major
frontier of nuclear theory is to accurately describe the change in the nuclear interaction as one
moves away from stability.

1.2 Precision potentials and the need for three-body forces
The general quantum many-body problem for the nuclear Hamiltonian can only be exactly
solved in the lightest nuclear systems (A < 20), using what are called ab initio (Latin for “from
the beginning”) calculations. The general nuclear Hamiltonian can be written as

Ĥ = T +V = T +∑
i< j

V 2N
i j + ∑

i< j<k
V 3N

i jk + . . . (1.8)

where the potential is expanded in terms of the two-body V 2N, three-body V 3N, and higher
order terms. Many of the widely used nuclear potentials in ab initio calculations only include
the 2N interaction because it is expected that higher orders will have a small contribution in
the calculation [20]. The first nucleon-nucleon (NN) potential was the Yukawa model [21], in
which the force between nucleons is mediated by pion exchange,

V (r) ∝
e−mπ r

r
(1.9)

where mπ is the mass of the pion. Intuitively, this internucleon force can be thought of as the
residual interaction between colour-neutral nucleons, similar to Van der Waal forces between

9
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Figure 1.7: Examples of the nuclear potential between two nucleons in the 1S0 channel.
Note the resemblance to Van der Waals forces. The dashed lines show the regions
dominated by one and two pion exchange.

charge-neutral atoms [20]. As seen in figure 1.7 three distinct regions of the NN interaction
can be identified: a strongly repulsive core at short ranges, an attractive well at mid-ranges,
and a weak long-range attraction. Most models of this type include a central term, spin-spin,
spin-orbit, and tensor interactions, with each of these terms included once without isospin
dependence and once with isospin dependence. (Isospin is discussed further in section 2.5).
The models are constructed using the most general potential that obeys the symmetries of the
nucleus: rotation, translation, isospin, etc. [22]. The exact form of the potentials depends both
on the method in which the potential operators were derived, and on the choice of the coupling
strength for those operators. While the derived potentials may differ in their functional form,
they share in common that mesons are the force carriers. The most important meson in the
nuclear potential is the pion π (mπ± ≈ 138MeV/c2), with small contributions coming from
heavier mesons, such as the ρ (mρ ≈ 760MeV/c2), η (mη ≈ 549MeV/c2), etc. Examples of
often used potentials are Argonne V18 [23], Reid93 [24] and Urbana14 [25].

Up until the 1990’s, only the so-called NN potentials were considered, constructed to fit
the large body of nn and np elastic scattering data. However, systematic shifts in the binding
energies for multi-nucleon systems could not be accounted for without the inclusion of NNN
or 3N interactions. Ab initio calculations in light nuclei have demonstrated the need to include
3N-forces in nuclear structure calculations [26]. Figure 1.8 shows the results of the binding
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1.2. PRECISION POTENTIALS AND THE NEED FOR THREE-BODY FORCES

Figure 1.8: Binding energies calculated in Green’s Function Monte Carlo (GFMC) using
the NN potential AV18 (blue) and the 3N potential Illinois-7 (red), as compared to
the experimental values (green). Figure reproduced with permission from [26].

and excitation energies of several light nuclei, calculated both using the NN potential Argonne
V18 [23], and supplemented with the 3N interaction Illinois-7 [27]. Argonne V18 is the latest
NN potential developed at Argonne National Laboratory, and its name is derived from the 18
operator terms used in the model. The 3N Illinois potentials are divided into separate inter-
actions, each with slightly different choices for the potential coefficients [27]. The Illinois-2
and -7 interactions have been widely used in the nuclear community. When studying figure
1.8, we notice that the NN AV18 results (blue), while shifted in energy from the experimental
values (green), largely follow the correct level ordering and spacing. However, this is not true
in the ordering of the states in 10B, where the calculated ground state is a Jπ = 1+, while the
measured ground state is Jπ = 3+. The calculations including the 3N Illinois-7 (red+yellow),
show agreement between theory and experiment. The systematic shift in the binding energies
is largely accounted for, and the ordering of the states in 10B is reproduced.

While the addition of a 3N Hamiltonian to the precision NN potentials greatly increases the
agreement between theory and experiment, there is no natural way to include their effects in
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beyond which we plot only the data locating on the coor-
dinate axes and their nearest neighbors. As is clear from
Fig. 2, the wave function is suppressed at short distance
and has a slight enhancement at medium distance, which
suggests that the NN system has a repulsion (attraction) at
short (medium) distance.

Figure 3 shows the central (effective central) NN poten-
tial in the 1S0 (3S1) channel at t! t0 " 6. As for r2 in
Eq. (2), we take the discrete form of the Laplacian with the
nearest-neighbor points. E is obtained from the Green’s
function G# ~r;E$ which is a solution of the Helmholtz
equation on the lattice [9]. By fitting the wave function
!#~r$ at the points ~r " #10–16; 0; 0$ and #10–16; 1; 0$ by
G#~r;E$, we obtain E#1S0$"!0:49#15$MeV and E#3S1$ "

!0:67#18$ MeV. Namely, there is a slight attraction be-
tween the two nucleons in a finite box. To make an inde-
pendent check of the ground state saturation, we plot the t
dependence of VC#r$ in the 1S0 channel at several distances
r " 0, 0.14, 0.19, 0.69, 1.37, and 2.19 fm in Fig. 4. The
saturation indeed holds for t! t0 % 6 within errors.

As anticipated from Fig. 2, VC#r$ and Veff
C #r$ have

repulsive core at r & 0:5 fm with the height of about a
few hundred MeV. Also, they have an attraction of about
!#20–30$ MeV at the distance 0:5 & r & 1:0 fm. The
solid lines in Fig. 3 show the one-pion exchange contribu-
tion to the central potential calculated from

 V"C #r$ "
g2
"N

4"
# ~#1 & ~#2$# ~$1 & ~$2$

3

!
m"

2mN

"
2 e!m"r

r
; (5)

where we have used m" ’ 0:53 GeV and mN ’ 1:34 GeV
to be consistent with our data, while the physical value of
the "N coupling constant is used, g2

"N=#4"$ ’ 14:0. Even
in the quenched approximation, the one-pion exchange is
possible as the connected quark exchange between the two
nucleons. In addition, there is in principle a quenched
artifact to the NN potential from the flavor-singlet hairpin
diagram (the ghost exchange) between the nucleons [13].
Its contribution to the central potential reads [14]: V%C #r$ "
g2
%N

4"
~$1& ~$2

3 # m"
2mN
$2#1r!

m2
0

2m"
$e!m"r. Here g%N and m0 are the

%N coupling constant and a mass parameter of the ghost,
respectively. The ghost potential has an exponential tail
which dominates over the Yukawa potential at large dis-
tances. Its significance can be estimated by comparing the
sign and the magnitude of em"rVC#r$ and em"rVeff

C #r$ at
large distances, because V%C #r$ has an opposite sign be-
tween 1S0 and 3S1. Our present data show no evidence of
the ghost at large distances within errors, which may
indicate g%N ' g"N .

Several comments are in order here. (1) The asymptotic
wave function at low energy (E! 0) is approximated as
!asy#r$" sin(kr)&0#k$*

kr ! r)a0
r , where &0#k$ (a0) is the s-wave
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x! y plane.

  0

100

200

300

400

500

600

0.0 0.5 1.0 1.5 2.0

V C
(r

) 
[M

eV
]

r [fm]

-50

  0

 50

100

0.0 0.5 1.0 1.5 2.0

1S03S1
OPEP

FIG. 3 (color online). The lattice QCD result of the central
(effective central) part of the NN potential VC#r$ [Veff

C #r$] in the
1S0 (3S1) channel for m"=m' " 0:595. The inset shows its
enlargement. The solid lines correspond to the one-pion ex-
change potential (OPEP) given in Eq. (5).

300

400

500

600

2 3 4 5 6 7 8

V C
(r

) 
[M

eV
]  r=0.00fm

 r=0.14fm

 r=0.19fm

-40
-20
  0

 20

2 3 4 5 6 7 8

V C
(r

) 
[M

eV
]

t-t0 [lattice unit]

 r=0.69fm

 r=1.37fm 
 r=2.19fm 

FIG. 4 (color online). t! t0 dependence of VC#r$ in the 1S0
channel for several different values of the distance r.

PRL 99, 022001 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
13 JULY 2007

022001-3

Figure 1.9: NN-potential in the singlet and triplet channels, calculated in lattice QCD.
The long-range behaviour is similar to the one-pion exchange potential (OPEP)
and the hard core is reproduced. Figure reproduced with permission from [30].

these models. Specifically, the inter-nucleon force must derive from Quantum Chromodynam-
ics (QCD), but the precision NN potentials have no strong theoretical foundation in QCD. Cur-
rently, modern nuclear interactions are based on Chiral Effective Field Theory (χEFT). χEFT
attempts to model the interactions between pions and nucleon fields (nucleons, ∆-resonances,
etc.) by expanding the scattering amplitudes in small powers of the ratio of the pion mass to
the breakdown scale of the theory [28]. In this way, 2N, 3N, and higher order interactions
arise naturally in the theory, and there is a clear connection to the underlying QCD. Modern
interactions based on χEFT are discussed further in section 2.1.

While ab initio calculations are powerful in predicting the structure of light nuclei, they
cannot be directly applied to heavier nuclei due to large increases in the required model space.
For example, in the calculation of the ground state of 12C, as shown in figure 1.8, the solu-
tion to the Hamiltonian requires solving a system of 270 336 complex second-order coupled
equations in 33 coordinates [29]. Such calculations become intractable for heavier systems.
Instead, effective interactions are constructed to reduce the model space. How such effective
interactions are constructed, and the role of 3N forces is discussed in chapter 2.

A question that often arises is how well do these potentials connect with the underlying
QCD? While these potentials do not intrinsically start from QCD, they do, however, reproduce
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1.3. MASS MEASUREMENT TECHNIQUES

the inter-nucleon potential [22]. One direction is to determine the NN potential directly from
QCD by calculating the NN potential in lattice QCD. Pioneering work by Ishii et al. [30, 31,
32], has shown that the picture of an attractive potential with a hard-core at short distances
is correct. Figure 1.9 shows the lattice QCD result for the central part of the interaction in
the 1S0 and 3S1 channels. The calculations are compared at long range with the one-pion
exchange potential, showing that the expected long-range behaviour is reproduced. Further
work [31] shows the hardness, or repulsiveness, of the core depends on the quark mass used
in the calculations – as more realistic quark masses are used, the harder the core becomes.
As a consequence of the harder core, the medium range attraction is slightly enhanced. The
difference between the precision potentials at short range may be related to differences in the
underlying quark mass, even though the quark mass is not a direct input.

1.3 Mass measurement techniques
As the atomic mass is an important component in determining nuclear structure, several differ-
ent measurement techniques have been developed, broadly falling into two categories [33, 15]:
indirect and direct methods. A common indirect method is a mass measurement through nu-
clear reactions of the form A(b,c)D, where the beam particle b reacts with the target particle
A, producing a beam-like ejectile c and a target-like recoil D. Determining the mass of any of
these particles requires knowing at least three of the masses, the kinematics of the incoming
channel and the energy of one of the particles in the outgoing channel. Traditionally, reactions
can give accurate and precise mass values. Some of the highest precision mass values are from
(n,γ), (p,γ), (n, p), and (n,α) reactions. For example, the separation energy of the deuteron is
known to 0.4 eV from the 1H(n,γ)2H reaction [34]. Neutron-capture reactions require stable,
or very long-lived, targets, limiting the possible cases to nuclides close to stability. Slightly
more exotic nuclei can be investigated with such reactions by transferring several nucleons
from the beam to the target. The reaction mechanism is, however, much more complex, and
when combined with low statistics from the small reaction cross-sections, can potentially lead
to incorrect results.

Another indirect method determines masses by measuring Q-values. The Q-value is the
total amount of energy available in a decay or reaction, and is related to the difference between
the masses of mother and daughter as

Q = ∑KFinal−∑KInitial = (∑MInitial−∑MFinal)c2 (1.10)

where K and M are the kinetic energy and atomic masses of the particles before and after the
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decay, respectively. Two common modes for nuclei to decay are α- and β -decay. Q-values
from α-decays provide accurate and precise values owing to the simplicity of the decay—
there are only two particles in the out-going channel—and the total energy of the decay can
be measured by implanting the parent in a suitable detector. Q-values from β -decays tend
to be prone to under-estimating systematic errors because the energy of the decay is shared
between three particles: the daughter nucleus, the β -particle and the neutrino. The Q-value
is determined by measuring the β -energy endpoint. However, the response function of the
detector has to be well understood, otherwise the extracted end-point energy will be dominated
by systematic errors [15]. Further complicating matters, is the fact that in nuclei far from the
stable nuclides, the decay Q-values are large, which opens up a significant number of decay
channels. If these are not properly accounted for, the extracted mass value can be systematically
shifted.

While both reactions and β -endpoint measurements can provide accurate mass values, they
can give incorrect results arising from complex systematics in the measurement device and co-
produced contamination. An example of an incorrectly determined mass was 46V, where a
direct Penning trap mass measurement differed by more than 3σ from a (p,γ) reaction [35].
The mass value of 46V was subsequently confirmed by another direct Penning trap system
measurement [36, 37]. In β -endpoint measurements, it is generally seen that mass values from
β -decay measurements underestimate the binding. For example, the Q-value for the decay
of 85Nb was found to be 900 keV larger in a Penning trap measurement [38] than in the β -
endpoint measurement [39]. Many of the known mass values used in r-process calculations
(section 1.4.2) critically depend on the results of β -endpoint measurements; thus, independent
verification of these masses is required.

To overcome the limitations of these indirect methods, several direct mass measurement
techniques have been developed. The data collected in direct measurements are often sim-
pler to interpret than the data from indirect methods, allowing for precise and accurate mass
measurements of nuclides not only with short half-lives (t1/2 < 100 ms), but also those pro-
duced at very low rates. The main methods [33, 15] rely on measuring either the time-of-flight
(TOF) [40] or the cyclotron frequency of an ion [41, 42] (section 3.3.4). Traditionally, time-
of-flight techniques have used magnetic spectroscopy systems, such as SPEG at Ganil [43],
where the time-of-flight is measured between two microchannel plate detectors. Time-of-flight
techniques have generally been relegated to facilities where fast (Ekin ≈ several MeV/nucleon
to GeV/nucleon) production beams are used. One such device is the Experimental Storage
Ring [44] at the GSI facility in Darmstat, Germany. By measuring the revolution frequency
of an ion stored in the ring [40], it is possible to determine the mass when the flight path, and
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hence the total length is known. Resolving powers of up to m/δm ≈ 106 can be reached with
storages times of ≈ 1 s, and resolving powers of ≈ 105 can be reached after 50 µs [45]. A
recent development is the Multi-Reflection Time-of-Flight device, which captures low-energy
beams (Ekin ≈ 2 keV) between a pair of electrostatic mirrors. In this way, the flight path of the
ion can be increased to several kilometres, allowing for resolving powers of ≈ 105 for flight
times of several tens of milliseconds [46, 47, 48].

For the highest precision, the tool of choice is a Penning trap. High-precision measurements
are achievable due to the unique storage environment: Single charged particles are held for long
times in high vacuum, with well defined trapping potentials. Relative atomic mass precisions
of below 10−8 have been reached for unstable nuclei with half-lives below 100 ms [41], and
10−11 for stable nuclei [42]. Examples of the performance of Penning traps are:

• some of the most stringent tests of CPT symmetry, comparing the antiproton and proton
charge-to-mass ratios to 90 ppt [49]

• the most precise atomic mass values for stable nuclei, 11 ppt for 16O, and 94 ppt for the
mass of the electron [50]

• and precise Q-value measurements of superallowed β -emitters [51] to determine the
quark mixing matrix element Vud of the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN) [52] is one such Penning trap
system. Due to the ion production source and the ion injection method into the trap, TITAN is
capable of performing precise and accurate measurements on short-lived isotopes that cannot
be measured by other Penning traps. The work described here was carried out using the TITAN
system, and is described in detail in section 3.3.

1.4 The importance of Penning-trap mass measurements
Atomic mass measurements play an important role in many aspects of nuclear physics, relevant
for questions from the smallest scale — is the quark mixing matrix unitary within the Standard
Model of particle physics? — to the largest scales — how are elements heavier than iron
made in hot astrophysical environments? The atomic mass is important in studying new and
emerging phenomena in nuclei, e.g. nuclear halos [53], in studying the evolution of “magic
numbers” [54, 55], and in studying the onset of deformation [56, 57]. Precise and accurate
mass values provide stringent tests of nuclear theory [58, 59].

The binding energy (Eq. 1.5), which is derived from the atomic mass, is important because
it reflects the sum of all the interactions at play in the nucleus, making it sensitive to interactions
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that may only be observed far from stability. The following describes examples of regions
where mass measurements are important for nuclear physics.

1.4.1 Cabibbo-Kobayashi-Maskawa unitarity
The Cabibbo-Kobayashi-Maskawa (CKM) matrix is a unitary transformation matrix relating
the quark mass eigenstates to the flavour eigenstates:




dw

sw

bw


=




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







ds

ss

bs


 (1.11)

where u, c, t, d, s, b are the up, charm, top, down, strange, and bottom quarks, and the subscript
s and w denote the strong and weak eigenstates. Because the CKM matrix is defined to be
unitary in the Standard Model, the sum of the squares of any row or column should be 1, with
any deviation from this indicating that extra quark generations or other physics beyond the
Standard Model may be required. Currently, the most stringent unitary test is done using the
first row of the matrix

|Vud|2 + |Vus|2 + |Vub|2 = 1. (1.12)

The element |Vud|2 accounts for nearly 95% of the first row’s size. Vud is special among the
CKM elements as it can be accessed by nuclear physics through superallowed 0+→ 0+ Fermi
β -decays, due to the simplistic nuclear structure. Occurring between isobaric analogue states
(states that are related by isospin-lowering and isosping-raising operators), superallowed β -
decays used for tests of the CKM matrix are almost independent of nuclear structure. The nu-
clear matrix element of the decay differs from a Clebsch-Gordan coefficient at the few percent
level, largely due to charge-dependent effects in the nuclear interaction. The other elements of
the CKM matrix lie in the domain of particle physics, and are typically measured at collider
facilities [60]. Electron capture and β -decay in nuclear systems transforms a proton (u,u,d)
into a neutron (u,d,d), or vice-versa for β+-decay. From this one can access |Vud|. Assuming
the conserved vector current hypothesis [61], the β -decay f t-value can be written as

f t =
K

GV |MF |2
(1.13)

where K is a constant, GV is the vector coupling constant, and MF is the matrix element con-
necting the initial and final states. The f t-value is called the “comparative half-life” of the
decay, accounting for the available phase space f and the half-life t of the decay. The vector
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coupling constant can be written as GV = VudGµ , where Gµ is the coupling constant for the
purely leptonic decay of the muon. The experimental f t-value depends on the three experi-
mental values:

1. the half-life of the superallowed decay,

2. the branching ratio to the 0+ state,

3. and the Q-value of the decay to the 0+ state.

Because the f t-value depends on the Q-value to the fifth power Q5 [51], precise and accurate
mass values are required.

1.4.2 Nuclear astrophysics
Extremely neutron rich nuclei can be produced in hot astrophysical environments, such as core-
collapse supernovae [62] or neutron star mergers [63], which are considered as sites for the
so-called rapid-neutron capture process (r-process). Because the involved nuclei are extremely
neutron rich and difficult to produce in the laboratory, there is a distinct lack of experimental
knowledge on all required quantities: half-lives, β -delayed neutron decay probabilities, sep-
aration energies, etc. This information is needed to develop a complete understanding of the
process and the resulting chemical element abundances. Besides the nuclear physics properties,
astrophysical sites need to be investigated and understood. Without experimental values for the
required nuclear properties, nuclear astrophysicists rely on nuclear models. Figure 1.10 shows
the range of calculated elemental abundances for four different mass models. These models are
able to accurately predict masses where data exists, but they greatly diverge from each other
where the mass values are not known. This results in a wide range in the predicted chemical
abundances. Through precise and accurate mass measurements, more reliable and realistic de-
scriptions of nucleosynthesis are possible. Therefore, sensitivity studies have been performed
to determine the nuclei where masses have the largest influence on the final abundances [64].

1.4.3 Nuclear halos
In 1985, a remarkable observation was made in a radioactive beam experiment at the Lawrence
Berkeley National Laboratory: The matter radius of 11Li was found to be much larger than that
of adjacent nuclei [66]. Subsequent theoretical and experimental studies led to a coining of the
name “halo nucleus”. Nuclear halos are characterized by a long tail in the matter distribution,
related to the weak binding of the halo nucleons. Departing from the normal r ∝ A1/3 scaling
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We find that, when the wind termination shock occurs at high temperature (∼ 1 GK), the
r-process takes place in (n,γ)-(γ,n) equilibrium, as in the classical r-process. In this case the
neutron separation energies determine the abundances along an isotopic chain. On the other
hand, when the reverse shock is at low temperatures (< 0.5 GK) photo-dissociation becomes
negligible and there is a competition between neutron capture and beta decay. Consequently
the relevant nuclear physics input will depend on the dynamical evolution of the outflow. This
translates into different r-process paths and differences in the final abundances, as shown in
Fig. 1.

3.2. Dependence on mass models
Here we describe only the case where the evolution takes place at high temperatures and therefore
in (n,γ)-(γ,n) equilibrium. Other cases and more details can be found in Ref. [5]. In Fig. 2 we
present the final abundances obtained for the same trajectory but different mass models. We find
that the region before the third peak is remarkable different but also the abundances between
peaks vary considerably.

Figure 2. Final abundances
obtained from different mass
models. All cases are cal-
culated with the same tra-
jectory which reaches (n,γ)-
(γ,n) equilibrium, because the
reverse shock is at 1 GK.

In order to assess the impact of nuclear masses, we compare the abundances obtained from
FRDM to ETFSI-Q at freeze-out (Yn/Yseed = 1) and when all decays have occurred. In Fig. 3 we
observe remarkable odd-even effects following the behavior of the neutron separation energies.
However, the final abundances in Fig. 4 are smoother similar to solar abundances.

In the long-time evolution there is a competition between beta decay and neutron capture
and we have found that neutron captures still play an important role when matter moves back
to stability, even when neutron densities and neutron-to-seed ratios are low (Nn ≈ 1017cm−3

and Yn/Yseed ≈ 10−5). Neutron captures can fill holes, move peaks to higher mass number
and reduce odd-even effects in the abundances. Moreover, the masses also enter in the neutron
capture cross sections, and this can explain the differences in Fig. 4 between the two mass
models.

4. Conclusions
The late-time evolution of the ejecta, also after freeze-out of the r-process, is very important
to determine details in the final abundances. Therefore, we performed nucleosynthesis studies
in neutrino-driven winds by means of long-time hydrodynamical simulations of core-collapse
supernova explosions. The conditions found in the simulations (low wind entropies and/or high
electron fraction) do not allow the formation of heavy elements. However, an artificial increase
of the entropy by a factor around two is enough to reach A=195 and allow us to explore the
sensitivity of the wind termination shock and the nuclear physics input.

3

Figure 1.10: Model dependence of r-process abundances for three different mass models.
Figure reproduced with permission from [65].

in nuclei near stability, 11Li is comparable in size to 208Pb, even though they are ≈ 200 mass
units apart.

In 11Li two neutrons are loosely bound to a 9Li core, displaying a two-neutron separation
energy of only S2n = 369 keV [67]. From the extended matter distribution several key features
can be extracted: the halo nucleons are in low angular momentum states, otherwise the cen-
trifugal barrier would suppress the wave function. Moreover, the separation energy of the halo
nucleons needs to be small, otherwise the potential well would suppress the wave function at
long distances [68]. The extended matter distribution also manifests itself in a much larger
reaction interaction cross-section than would normally be expected [68]. There are several
types of halo nuclei, classified by the number of nucleons that comprise the halo [68]: the one
neutron halos 11Be and 19C, the two-neutron halos 11Li and 6He, amongst others, and the four-
neutron halos 8He and 14Be. Several proton halo nuclei are considered, such as the one-proton
halo 26P and the two-proton halo 17Ne, however there are fewer proton halo nuclei than neutron
halo nuclei [68]. Since halo nuclei are so weakly bound, the separation energy, and hence, the
mass, is an important component in determining their structure, and a key ingredient for testing
theoretical predictions.
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Figure 1.11: Disappearance of (a) N = 20 and (b) N = 28 magic numbers, seen through
the semi-empirical shell gap ∆n. Data from [69].

1.4.4 Shell structure evolution
Most nuclear models have only been constrained with data near the stable nuclides, and only
recently have data from nuclei with extreme proton to neutron ratios become available. Isospin
is an approximate symmetry of nucleons, and the nuclear interaction can be parametrized in
terms of isospin (isospin is discussed further in section 2.5). The important point for the present
discussion, is that the nuclear interaction is different in the T = 0 (proton-neutron) channel than
in the T = 1 channel (proton-proton or neutron-neutron) [70]. Near the stable nuclides the T =

0 channel dominates because of the nearly equal number of protons and neutrons, but moving
far from these stable regions the T = 1 channel becomes increasingly more important, a change
that may affect the location of the standard magic numbers [70]. As an example, figure 1.11
shows the empirical shell gap ∆n 1.7 along the N = 20 and 28 isotones. In progressively
neutron-rich nuclei the shell gap drops below 2 MeV, an indication that the neutron number is
no longer magic, as typical shell gaps are found to be around 4 MeV.

In these regions of reduced shell gap strength, the ground state may be an “intruder”
state [71]. An intuitive understanding of intruder states can be found through the following
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example. Consider a Hamiltonian with n degenerate states, all coupled with the same strength:

Ĥ =−




ε ∆ ∆

∆ ε ∆ . . .

∆ ∆ ε

... . . .




where ε is the energy of the degenerate states, and ∆ is the interaction strength between them.
One state, the correlated state, shifts down by−(n−1)∆, while the other states shift up by ∆. If
the coupling between the states is large, this correlated state can drop below any lower energy
states, thus becoming an “intruder” state. In atomic nuclei, an intruder state occurs when
nucleons populate a state that would normally be higher in energy and, through a large gain in
correlation energy due to particle-hole excitations, causes the state to drop below the “normal”,
or expected, state [71]. Regions of inversion have been experimentally found to lie where
the magic numbers begin to vanish. There may still be a large shell gap in the single-particle
energies, which is an indication of a shell closure, but the large gain in correlation energy
causes a re-ordering of the states [72]. A prime example is 32Mg, which is the start of the
“island-of-inversion” (figure 1.11 (a)) [73, 74]. The expected ground state would be Jπ = 0+,
made up of protons in the 0d5/2 and neutrons in the 0d3/2 states. Instead, the ground state is
a deformed 0+ state, formed by neutrons predominantly in the 1p3/2 and 0 f7/2 orbitals [75].
This is also confirmed by the observation that the ground state of 33Mg is largely a neutron in
the 1p3/2 on top of a 32Mg core [76].

A similar region of inversion occurs along the N = 28 magic number. Large deformation
is seen in the ground-state of 42Si [77, 78], and there are indications that this deformation
might continue into 40Mg [79, 80]. Early theoretical investigations show that the ground-state
structure of the N = 28 isotones rapidly changes from a spherical configuration in 48Ca through
a vibrational configuration in 46Ar, to oblate (flattened spheroid shape) in 42Si, and prolate
(elongated spheriod shape) in 40Mg [54]. More data is needed to clarify the structure evolution
in this region, and mass measurements will play a vital role in these investigations.

Magic numbers cannot only disappear, they can also appear unexpectedly [81]. One
example that has received much attention is the appearance of a new magic number at
N = 16 [82, 83, 84] in the oxygen isotopic chain. By now 24O is fully considered to be a
doubly magic nucleus: systematic trends in the mass surface point to an increase in binding at
24O, the ground state of 24O is s-wave, as predicted by the shell model, and a large excitation
energy for the first 2+ state. Other proposed new magic numbers are at N = 32,34 near Z = 20
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Figure 1.12: Historical mass excesses for (a) 51Ca, and (b) 52Ca. The red band is the
value adopted in AME03 [85]. Individual measurements are discussed further in
sections 4.1.1 and 4.1.2.

[81].

1.5 Penning-trap mass measurements to test 3N forces
As we have seen, the atomic mass is an important component in many aspects of nuclear
physics, and provides a significant tool in testing nuclear models. Three-nucleon forces were
shown to be crucial in reproducing the global binding energies of light nuclei in ab initio cal-
culations, however, their role in medium mass nuclei is unknown. In this thesis we will test the
role of 3N forces in medium mass nuclei through precision mass measurements. Specifically,
we will test established phenomenological interactions that only include two-body effects, and
new interactions, derived from chiral effective field theory (χEFT), a low-energy perturbation
expansion of QCD, that provides a framework for including 3N effects. How such models are
constructed is discussed in chapter 2.

First, the masses of the neutron-rich nuclei 51,52Ca were measured to test the possibility of
new shell closures near N = 32 and 34. The measurements are compared to predictions from
well established interactions based on 2N forces, and modern interactions that include the effect
of 3N forces. Further, the measurements that exist in this region are in strong disagreement, as
can be seen in figure 1.12. A precision mass measurement was needed to clarify the mass values
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of these nuclides. Second, the masses of 20,21Mg were measured to test the role of 3N forces
in the isobaric multiplet mass equation (section 2.5). These two measurements probe different
aspects of the 3N force. As the calcium isotopes are at a proton magic number (Z = 20),
the protons do not strongly interact with the active neutrons, providing insight into the 3N
neutron-neutron interaction. On the other hand, the proton-rich Mg measurements probe the
3N interaction when both protons and neutrons are active in the calculation.
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Chapter 2

Nuclear theory

NN potentials currently lead to unsatisfactory results in comparison with experiment, but this
can be overcome through the use of interactions based on chiral effective field theory (χEFT)
which gives a systematic approach to including the effect of 3N forces. This chapter will
introduce how χEFT based interactions are used in modern nuclear physics calculations, how
these calculations compare to existing interactions based on phenomenology, and how mass
measurements can be used to tests these theories.

2.1 Chiral effective field theory
Chiral symmetry is only a true symmetry in the limit of massless quarks [61]. Since the masses
of the u and d quarks are light compared to the mass of a nucleon, the chiral symmetry can
be treated as an approximate symmetry. As in any EFT, the degrees of freedom must be de-
termined, and in the nucleus, the relevant degrees of freedom are the protons, neutrons and
exchange pions. Generally, the chiral effective Lagrangian used for nuclear theory only cond-
siders the u and d quarks, and from the spontaneous symmetry breaking of the chiral symmetry,
three pseudo-Goldstone bosons [61] act as the force carriers. In modern χEFT interactions only
the pion is considered, which is a natural choice due to the large mass gap of ≈ 600 MeV/c2

to the ρ-meson. The breakdown energy Λ of the EFT is chosen be between the pion mass
and the nucleon mass, and, in practice, Λ is taken between 500-700 MeV. The interaction can
then be expanded in powers of Q/Λ, where Q is the “soft scale” of the EFT and is typically
close to the mass of the pion [86]. This chiral expansion of QCD in the nucleonic sector solves
many of the problems with the precision NN interactions: χEFT allows for an expansion of the
nuclear interaction order by order, allowing for theoretical uncertainties to be assigned, χEFT
naturally explains the observed hierarchy of the NN, 3N, etc. forces in a consistent framework.
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Fig. 4. (a) Chiral EFT for nuclear forces. (b) Improvement in neutron–proton phase shifts shown by shaded bands from cutoff variation at NLO (dashed),
N2LO (light), and N3LO (dark) compared to extractions from experiment (points) [31]. The dashed line is from the N3LO potential of Ref. [20].
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Fig. 5. (a) Differential cross section (inmb/sr) and vector analyzing power for elastic neutron–deuteron scattering at 10MeV (top) and 65MeV (bottom) at
NLO (light) and N2LO (dark) from Ref. [36]. (b) Ground-state energy of 6Li at NLO and N2LOwith bands corresponding to the⇤ variation over 500–600MeV
compared to experiment (solid line, see Ref. [36] for details).

is still considerable off-diagonal strength above k = 2 fm�1, which remains problematic for nuclear structure calculations
(and the coupled 3S1–3D1 channel is generally worse).3 One might think the solution is to simply fit with a smaller ⇤, but
then the fit worsens significantly as the truncation error grows with Q/⇤.

3 Note that the cutoff associated with the potential in Fig. 6(a) is ⇤ = 500 MeV, which might lead one to expect no strength above k ⇡ 2.5 fm�1.
However, the regulator does not sharply cut off relative momenta.

Figure 2.1: Order by order χEFT diagrams for NN, 3N and 4N forces. Orders are: lead-
ing order (LO), next-to-leading order (NLO), next-to-next-to-leading order (N2LO),
etc. Figure reproduced with permission from [87].

Lastly, χEFT has a clear connection to QCD. Figure 2.1 shows the leading terms in the χEFT
interaction.

An essential ingredient to any effective field theory are contact interactions that capture the
physics of the neglected degrees of freedom. These contact interactions are captured in contact
terms that can be either calculated from existing theories or fit to experimental data. For the
nuclear interactions we are concerned with, the two-body terms are generally fit to the π-N and
N-N scattering data, while the 3N terms are fit to reproduce observables in light many-body
systems, such as 3H and 4He. Herein lies the power of the χEFT formulation: the coupling
constants are fit once to experiment, and the resulting interactions should then be applicable to
the whole nuclear chart.

A problem with using the bare chiral potential is the strong coupling between low- and
high-momentum states. The coupling of high and low momentum components in these bare
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Fig. 9. Schematic illustration of two types of RG evolution for NN potentials in momentum space: (a) Vlow k running in ⇤ and (b) SRG running in �. At each
⇤i or �i , the matrix elements outside of the corresponding lines are zero, so that high- and low-momentum states are decoupled.

Fig. 10. Two types of RG evolution applied to one of the chiral N3LO NN potentials (550/600 MeV) of Ref. [44] in the 3S1 channel: (a) Vlow k running in ⇤
and (b) SRG running in � (see Fig. 27 for plots in k2, which show the diagonal width of order �2).

‘‘At each scale, we have different degrees of freedom and different dynamics. Physics at a larger scale (largely)
decouples from the physics at a smaller scale. . . . Thus, a theory at a larger scale remembers only finitely many
parameters from the theories at smaller scales, and throws the rest of the details away. More precisely, when we
pass from a smaller scale to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the RG
method is to explain how this decoupling takes place and why exactly information is transmitted from scale to scale
through finitely many parameters.’’

The common features of RG for critical phenomena and high-energy scattering are discussed by StevenWeinberg in an essay
in Ref. [64]. He summarizes:

‘‘Themethod in itsmost general form can I think be understood as away to arrange in various theories that the degrees
of freedom that you’re talking about are the relevant degrees of freedom for the problem at hand.’’

This is the heart ofwhat is donewith low-momentum interaction approaches: arrange for the degrees of freedom for nuclear
structure to be the relevant ones. This does not mean that other degrees of freedom cannot be used, but to again quote
Weinberg [64]: ‘‘You can use any degrees of freedom you want, but if you use the wrong ones, you’ll be sorry.’’

There are two major classes of RG transformations used to construct low-momentum interactions, which are illustrated
schematically in Fig. 9. In the Vlow k approach, decoupling is achieved by lowering amomentum cutoff⇤ abovewhichmatrix
elements go to zero. In the SRG approach, decoupling is achieved by lowering a cutoff � (in energy differences �2) using flow
equations, whichmeans evolving toward the diagonal inmomentum space. The technology for carrying out these is outlined
in Section 3, but the effects can be readily seen in the series of contour plots in Fig. 10(a) and (b).

With either approach, lowering the cutoff leaves low-energy observables unchanged by construction, but shifts
contributions between the interaction strengths and the sums over intermediate states in loop integrals. The evolution
of phenomenological or chiral EFT interactions to lower resolution is beneficial, because these shifts can weaken or largely
eliminate sources of non-perturbative behavior, and because lower cutoffs require smaller bases inmany-body calculations,
leading to improved convergence for nuclei. The RG cutoff variation estimates theoretical uncertainties due to higher-
order contributions, to neglected many-body interactions or to an incomplete many-body treatment. When initialized with

Figure 2.2: Renormalization group (RG) evolved χEFT potentials at N3LO with Λ =
500 and 600 MeV in the 1S0 channel. (a) Vlowk (b) SRG. Figure reproduced with
permission from [87].

interactions requires extended model spaces to achieve converged results for nuclear physics
calculations, presenting a large computational challenge. The hard core also causes uncorre-
lated two-body wave functions to diverge because the wave functions has a non-zero value at
distances less than the hard core radius. The high-momentum components can be removed
by evolving the interaction to low momentum through renormalization group techniques, one
such technique being the Vlowk approach. An interesting side-effect of these procedures is that
at low momentum, all potentials have the same form – there is a universal potential at low
momentum – as can be seen in figure 2.2. This happens because the renormalization procedure
integrates out the high-momentum components. A side effect of this renormalization is that
the high-momentum components are “shuffled” to higher-body forces (e.g. high-momentum
NN terms are moved into the effective 3N and higher terms). The short range potential differs
between the various interactions, however the long-range, low-momentum parts are the same,
leading to comparable low momentum interactions.

Several other techniques to soften the potential have been introduced in recent years. One
class, called the Similarity Renormalization Group (SRG) [88], uses a continuous sequence of
unitary transformations to drive the Hamiltonian to a band diagonal form (figure 2.2 (b)). This
results in an evolved form that differs from the global Vlowk form, although the low momentum
parts of the two are quite similar. SRG evolved potentials have the advantage that high-energy
phase shifts are preserved, unlike in Vlowk potentials. Extensions to the SRG, called the In-
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Figure 2.3: Schematic valence space for an effective interaction. Valence nucleons can
only interact with themselves. The core and higher lying states are inert and ex-
cluded from the calculation.

Medium SRG[89, 90] and multireference IM-SRG [91], have also been developed. Instead of
evolving the interaction in free space as done in SRG, IM-SRG evolves the potential in the
medium of the many-body system being studied. This allows for the evolution of arbitrary or-
der operators using only the machinery required for the two-body case. All of these techniques
successfully reproduce experiment in a wide range of nuclear systems [88, 89, 90, 91].

2.2 Effective interactions
For all but the lightest systems, full ab initio calculations are not possible due to the exponential
increase in the required model space. Theory then turns to effective interactions, where effec-
tive Hamiltonians are built in a valence space on top of a core nucleus, shown schematically
in figure 2.3. This is done to reduce the model space of the calculation. To show this, we now
sketch the steps required to build an effective interaction [92]. First, we set up the Schrödinger
equation

HΨλ = Eλ Ψλ , (2.1)

where the Hamiltonian can be written as

H = T +V = (T +U)+(V −U) = H0 +H1 (2.2)

where V is the internucleon interaction and U is a convenient potential, typically chosen to be
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the harmonic oscillator,

U =
A

∑
i=1

1
2

mω
2r2

i . (2.3)

The wavefunction Ψλ is then expanded in the basis states φ0 of H0. To reduce the dimension-
ality of the problem, the basis states are written in terms of the closed core |c〉. The core is
usually a doubly magic nucleus, such as 16O or 40Ca, in which nucleon excitations from the
core into the valence space are prohibited. Next, two projection operators are defined, P and
Q = 1−P, where P acts to project from the complete space into the valence space, while Q

acts to project into the excluded space. The eigenvalue problem now reduces to

PHe f f PΨλ = Eλ PΨλ , (2.4)

and if we calculate the binding energies relative to the closed core,

PH ′e f f PΨλ = (Eλ −Ec)PΨλ , (2.5)

where He f f is the effective Hamiltonian in the valence space of interest, and H ′e f f is the shell
model effective Hamiltonian. The effective Hamiltonian can then be decomposed into two
parts

H ′e f f = H ′0 + ve f f (2.6)

where H ′0 is the one-body Hamiltonian, measuring the binding energy of single particles with
respect to the core, and ve f f is the effective interaction between all nucleons in the valence
space. In general, there are up to n-body interactions in the valence space, where n is the
number of nucleons in the valence space, but typically only the two-body matrix elements
were considered. Using the two-body approximation, the general effective Hamiltonian is

He f f = ∑εαa†
αaα +

1
4 ∑〈αβ |V |δγ〉a†

αa†
β

aδ aγ (2.7)

where εα is the single particle energy, Greek indices label states in the valence space, and V

is the effective interaction between two valence nucleons. The single particle energies can be
taken empirically to be the difference in binding energy between the state α in a closed-shell +
1 nucleon nucleus and the corresponding closed shell nucleus. Alternatively, the single particle
energies can be calculated self-consistently by calculating the one-body attached states in the
nuclei of interest. Three issues need to be solved to use the above formalism: the valence space
has to be chosen to contain the degrees of freedom for the specific physical quantity of interest,
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the effective interaction ve f f needs to be determined from the original Hamiltonian H, and a
numerical framework must be developed to diagonalize the resultant matrix.

First, valence spaces were historically chosen to be the major oscillator shells of the har-
monic oscillator (see figure 1.3):

• the p-shell consisting of the 0p3/2,1/2 orbits,

• the sd-shell consisting of the 0d5/2,3/2 and 1s1/2 orbits,

• the p f -shell consisting of the 0 f7/2,5/2 and 1p3/2,1/2 orbits.

Several widely used interactions are the the following: the Universial sd (USD) interactions
USDA and USDB [93], which describe nuclei in the sd-shell, and the mass-dependent Kuo-
Brown interaction (KB3G) [94] and the G-matrix, experimentally fit interaction (GXPF1A)
[95], which describe nuclei in the p f -shell.

Second, the effective interaction Hamiltonian needs to be determined. One method to pro-
duce effective interactions, is to perform a perturbation calculation of an existing NN potential,
including effects of the nuclear medium to the matrix elements [92]. Once the set of interaction
matrix elements is produced, minor adjustments are generally performed to known experimen-
tal values, resulting in a interaction that not only reproduces experiment where data is available,
but also offers some predictive power. Falling under this approach is the KB3G interaction, the
latest version of the Kuo-Brown interaction, which was one of the first attempts at a realistic
interaction. Kuo and Brown started from a precision NN potential of the time, employed a
G-matrix renormalization [96], and calculated the matrix elements to second order. The KB
interaction showed spectacular agreement to the energy levels in 18O and 18F [97]. The KB3G
interaction is the modern incarnation of the original KB interaction, having had the matrix el-
ements and single particle gaps adjusted to provide better agreement with experiment. Other
approaches consist of fitting the matrix elements to all of the existing data available. Falling
under this approach are the USD [98] and GXPF1 interactions. The USD interaction was first
formulated in the 1980’s, and had 63 matrix elements fit to experimental data. Even this modest
number of elements to be fitted required two years of computer time, which would only take
an afternoon on a modern PC [99]. The GXPF1 interaction was also fit to experimental data,
with 195 two-body elements and four single particle energies fit to 699 energy data.

Lastly, codes need to be developed to diagonalize the large matrices generated in the
valence space. Many such codes exist, such as ANTOINE [100], NATHAN [100], and
OXBASH [101]. Each code employs different coupling schemes to generate the basis states,
and thus, the selection of code depends on the specific nucleus being calculated. For example,

28



2.3. MODERN χEFT BASED CALCULATIONS

the number of elements in the Hamiltonian to be diagonalized for 56Ni in the full f p-shell
is 1087455228 in the shell model code ANTOINE, and 15443684 in the code NATHAN.
Such large matrices are diagonalized using the Lanczos algorithm [102] until convergence is
reached.

In order to provide better agreement with experiment, new two-body interaction terms have
been explored. One possibility is the tensor force, which acts between S = 1 coupled protons
and neutrons [103]. When the proton and neutron have total angular momentums of j> = l +

1/2 and j′< = l′−1/2, the tensor force is attractive. Alternatively, when the proton and neutron
are both in j> or j< states the tensor force is repulsive. The tensor interaction reproduces the
observed magic and sub-magic shell closures, while being completely two-body in nature.

Others argue that rather than introducing new NN terms or fitting the matrix elements to a
large body of experimental data, one should include 3N terms [104]. It may be that these new
two-body terms or adjustments mimic three-body interactions. As shown earlier, 3N forces
were required to provide good agreement between theory and experiment in light systems, thus
it may be that 3N forces are also required in these effective interactions.

2.3 Modern χEFT based calculations
A commonality between all of the above interactions is they largely start from effective in-
teractions derived from precision NN potentials and are then phenomenologically adjust the
two-body matrix elements to reproduce experimental observables in the valence space of in-
terest. This approach has lead to several iterations of existing models. For example, the USD
interaction was originally developed in the 1980’s [98], but in 2006 two updated USD interac-
tions, USDA and USDB [93], were developed to account for both the increase in experimental
knowledge in the sd-shell, and the increases in theoretical tools to develop the effective inter-
action. Both interactions start from the two-body matrix elements derived from a renormalized
G-matrix effective interaction. On one hand, the USDA was constrained to remain close to
the starting effective interaction, giving a reasonable fit to the data but still remaining close to
the initial derived effective interaction; on the other hand, this constraint was removed for the
USDB, resulting in an interaction that is the best fit to the data. Similar changes have been
made to interactions in the p f -shell, such as the KB family: KB [105], KB3 [106], and KB3G
[94]; and the GXPF family: GXPF1 [107] and GXPF1A [95]. Modern effective interactions
now start with the χEFT internucleon interactions, and derive the effective interaction without
resorting to phenomenology, i. e., the fitting of matrix elements to data in the region applica-
ble to the model. Since these χEFT based interactions tend to have their coupling constants
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determined in light nuclear systems, a truly predictive nuclear interaction is obtained.
There are several approaches for solving the many-body Schrödinger equation in the va-

lence space. One approach is to adapt ab initio type calculations for use in medium mass
nuclei. For example, calculations with the importance truncated no-core shell model have re-
produced the binding energies of 16,24O and 40,48Ca [108], providing important benchmarks
for methods based on coupled-cluster theory [108]. In principle, these methods are exact, but
they are truncated to make the calculation computationally tractable. Coupled-cluster theory
uses a similarity transformed Hamiltonian H = eT Ĥe−T , where T is the cluster operator. T

acts to create n-particle n-hole states with respect to a reference state as,

T = T1 +T2 +T3 +T4 + . . .+TA (2.8)

where the Ti’s are the i-particle i-hole cluster operators. This formulation is exact, provided that
T is allowed to create A-body excitations. In practice, T is truncated to only include one- and
two-body excitations, an approximation termed the Coupled-Cluster Singles-Doubles (CCSD).
The inclusion of 3N forces poses a problem for CC-based calculations, as the computational
cost increases by orders of magnitude. To overcome this, the 3N force is reduced to an effective
two-body force by integrating the chiral 3N force over the Fermi sea in symmetric nuclear
matter [109]. Other methods involve constructing an effective interaction from the bare χEFT
potentials and then solving the Schrödinger equation using many-body perturbation theory [8].
These effective interactions can then be used with existing shell model codes.

Another approach uses Many-Body Perturbation Theory (MBPT) in a traditional shell
model framework. The effective interaction is built by evolving the χEFT interaction with
Λ = 500 MeV to low momentum, and is called Vlowk. The NN interaction is included at the
next-to–next-to–next-to leading order (N3LO) level, while the 3N interaction is included at the
N2LO level (see figure 2.1). Three-body effects are included by including the normal ordered
one- and two-body 3N interaction, corresponding to interactions between valence nucleons and
core nucleons. The residual 3N interaction between the valence nucleons is not included, as
CC calculations have shown that these interactions are small compared to the normal ordered
3N interaction [110]. These effective 3N interactions provide important repulsion between the
valence nucleons, increasing the spin-orbit splitting of the single particle energies [111].

The CC and shell model methods have had great success in reproducing experiment. More-
over, these two different approaches provide quite similar results, provided both calculations
start with consistent single-particle energies. Figure 2.4 compares CC and MBPT ground state
calculations in the calcium chain, where each calculation is based on the same NN potential.
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FIG. 2. (Color online) Convergence of (a) neutron and (b) proton SPEs as a function of increasing intermediate-state excitation N!ω.
Calculations are based on NN forces in 13 major harmonic-oscillator shells.

order converging faster than second order. For all orders, the
ground-state energies of both 42,48Ca are well converged by
∼12!ω. Similarly, Fig. 2 shows the convergence of neutron
and proton SPEs in the pf -shell as a function of N!ω. While
convergence is slower compared to the ground-state energies,
all SPEs are converged by 14!ω, with neutron and proton
SPEs following a very similar convergence pattern. Finally,
all calculations with 3N forces seem to be converged when
included in five major shells. In two-body matrix elements and
SPEs, the change from four to five major shells is ∼10 keV
and ∼50 keV, respectively. Work to extend 3N forces beyond
five major shells is currently in progress.

D. Benchmark with coupled-cluster theory

We can also benchmark the MBPT energies with ab
initio methods by using identical starting interactions and
working in the same single-particle basis. Here, we perform
CC calculations for the ground-state energies of the calcium
isotopes by using the same Vlow k interaction in a single-
particle basis of 13 major harmonic-oscillator shells with
!ω = 12 MeV. The results are shown in Fig. 3 relative to the
ground-state energy of 40Ca. The closed j -subshell systems
40,48,52,54,60Ca are calculated at the "-CCSD(T) level [42,55].
The A ± 1 systems 47,49,51,53,55,59Ca are obtained with the CC
particle-attached-or-removed equations of motion method at
the singles and doubles level (PA-PR-EOM-CCSD) [42,55].

To compare with CC results, we perform the MBPT
calculations in the pf shell, where the SPEs are taken as the
PA-EOM-CCSD (f7/2, p3/2, p1/2, f5/2) energies in 41Ca. The
particle-attached g9/2 is not of single-particle character, so
the MBPT pf -shell comparison provides the cleanest bench-
mark. This comparison probes the two-body part of the
valence-space Hamiltonian, assessing the reliability of the
convergence trend illustrated in Fig. 1.

In Fig. 3, we find that the MBPT ground-state energies
are within 5% (in most cases much better) of those of CC
theory. This shows that MBPT can be comparable to CC

theory for Vlow k interactions, provided that consistent SPEs
are employed.

While the CC ground-state energies agree well with MBPT
to 55Ca, this agreement deteriorates for heavier isotopes.
The reason is that the CC calculations begin to fill the g9/2
orbit, which is lower in energy than the calculated f5/2. This
makes a comparison of the CC and pf -shell valence-space
calculations unreliable for 59,60Ca. Moreover, a benchmark in
the pfg9/2 space is not possible because, as mentioned, the CC
one-particle-attached g9/2 state in 41Ca is not of single-particle
character.

E. Valence-space calculations

For neutron-rich oxygen and calcium isotopes, we have
shown that it is necessary in MBPT calculations of valence-
space Hamiltonians to expand the valence space beyond
the standard one-major harmonic-oscillator shell [28,30–32].
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FIG. 3. (Color online) Comparison of MBPT and CC ground-
state energies of calcium isotopes relative to 40Ca based on the same
NN interaction (for details see text). The MBPT results use the SPEs
obtained in CC theory.

024312-4

Figure 2.4: Comparison in calcium ground state energies calculated in coupled-cluster
(CC) and valence space many-body perturbation theory (MBPT). Figure repro-
duced with permission from [111].

The calculated ground state energies are quite close to each other, only deviating in the heavy
calciums. This is due to differences in the filling of the orbitals in these nuclides [111]. An-
other example is the long standing problem of the oxygen drip-line anomaly. The neutron
drip-line in the C, N and O isotopic chains ends at N = 16, while, with the addition of one
proton, the drip-line in the F isotopic chain extends to at least 30F. This is unexpected, as
naively one would expect 28O to be bound, as it is doubly magic when considering the conven-
tional magic numbers. With χEFT it was shown that the 3N part of the interaction provides
the necessary repulsive force, leading to the observed drip-line. As seen in figure 2.5, the NN
only interaction [10] over binds in the n-rich nuclei, leading to a bound 28O. By introducing the
3N-interaction, a repulsive force arises, pushing the drip-line back to N = 16. The phenomeno-
logical effective interaction USDB [93] is in excellent agreement with the experimental data
from the Atomic Mass Evaluation 2012 (AME12) [69], and it correctly predicts the drip-line
to be at N = 16. The Coupled-Cluster approach [109] also predicts the correct position of the
drip-line, although the heaviest nuclei are severely under-bound.
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Figure 2.5: Oxygen binding energies relative to 16O calculated with USDB, NN + 3N
shell model and CC interactions. NN and 3N + NN calculations from [10], and CC
calculations from [109]. Experimental data is taken from AME12 [69].

2.4 Testing χEFT forces: The N = 32,34 sub-shell closures
Much experimental and theoretical efforts have been spent trying to understand the properties
near N = 32 and 34. It has been predicted that new magic numbers may appear here, thus
leading to two new doubly magic nuclei: 52,54Ca.

There are several signatures of magicity that can be studied. One simple measure is the
excitation energy of the first excited 2+ state. A high energy first excited 2+ state indicates a
magic nucleus because of the cost in energy associated with constructing this state in magic
nuclei. Moreover, this cost is especially high in doubly-magic nuclei. Due to the pairing
mechanism in doubly-magic nuclei all pairs of nucleons are coupled to Jπ = 0+ states from
which it is impossible to construct Jπ = 2+ states. The only way to construct these states
is to break the nucleon pair, costing ≈ 1 MeV in energy, and promoting one of these nucleons
across the shell gap. The energy associated both with breaking the nucleon pair, and promoting
a nucleon across the shell gap leads to large energies for the first 2+ state.

A second measure of magicity is the reduced transition probability B(E2), a quantity that
measures the transition probability between the ground state and first excited 2+ state. The
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Figure 2.6: E(2+) and B(E2) values for Cr and Ti isotopic chains near N = 32,34. E(2+)
for the even Cr (a) and Ti (b) isotopes, and B(E2) values for Cr (c) and Ti (d)
isotopes. Beyond-mean-field (BMF) calculations from [112]. Cr data are from
[113] and [114], Ti data are from [115] and [114].

B(E2) is proportional to the electric quadrupole moment,

B(E2) ∝
∣∣〈2+

∣∣ Q̂
∣∣0+
〉∣∣2 , (2.9)

where Q̂ is the electric quadrupole operator. A small B(E2) is interpreted as being a near
spherical nucleus, while a large B(E2) corresponds to a deformed nucleus. Thus, large B(E2)
values should be found in collective nuclei that are mid-shell, while small B(E2) values will be
found at magic nuclei [116].

We can now study the existing spectroscopic information in the nuclei around 52Ca. In fig-
ure 2.6 we show the experimental E(2+) and B(E2) values, along with theoretical calculations
using GXPF1A, KBG3, and a beyond-mean field approach [112]. The GXPF1A and KB3G
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predictions were calculated in the full p f -space on top of a 40Ca core, using the shell model
code ANTOINE [117, 100, 99]. In figure 2.6 (a) and (b), there is a clear increase in the E(2+)
energy at both N = 28 and 32, as compared to the surrounding nuclei. The N = 32 gap is
reduced in the Cr isotopes as compared to the Ti chain, as evidenced by the decrease in the
E(2+). There is evidence that N = 34 is magic in 56Ti, however, in 58Cr the value returns to
the non-magic value. There is a corresponding decrease in the experimental B(E2) values at
N = 28 and 32 in both chain, but no such dip is seen at N = 34. From this we can conclude
that N = 32 is a good magic number, while N = 34 may be magic in Ti.

The beyond-mean-field approach reproduces the trend in the E(2+) energies, however, the
values are systematically too high. The GXPF1 and KB3G calculations do a much better job in
predicting the absolute values of the excitation energies, the GXPF1 calculation reproduces the
increase at N = 32, while the KB3G calculation does not. For the B(E2) values, the GXPF1A
and KB3G both give very similar results. In the Cr chain, the experimental B(E2)’s are quite
well reproduced, however, the drop at N = 32 is not. In the Ti chain, none of the staggering in
the B(E2)’s is reproduced. This lack of staggering is due to the choice of the effective charge
of the proton and neutron [70]. The effective charge is not the bare charge of the nucleon since
the effect of the core nucleons has been absorbed by the valence nucleons during the process
of defining the effective interaction. If the effective charge is changed, a staggering becomes
apparent, however, it still does not completely reproduce experiment.

All three theoretical models are mostly able to reproduce the measured results in the Cr
and Ti chains. As seen from both data and theory, it is evident that there is a sub-shell closure
at N = 32, given the above introduced signatures, and a weak sub-shell at N = 34 may exist
in Ti. A true test would be to examine the trends in the calcium chain. Verification of these
predictions thus far have not been possible due to the difficulty in performing experiments in
this region, resulting in an absence of data.

In figure 2.7 we plot the E(2+) values for the Ca isotopic chain. Again, all theories agree
quite well with experiment, however, they start to deviate from each other at N = 34. In
figure 2.7 (b) we also show the results based on χEFT interactions [120, 119]. The NN-only
interaction fails at reproducing the data, even to the point of missing the N = 28 shell closure in
48Ca. The calculations including 3N-forces achieve much better agreement with experiment,
not only reproducing the N = 28 magic number, but also in predicting the excitation value
at N = 34. The E(2+) was recently measured at the RIKEN facility [118], confirming that a
sub-shell exists at N = 34.

Another method to determine if N = 32 and 34 are closed shells, or sub-shells, is through
mass measurements, specifically, by examining the S2n values. Figure 2.8 presents the mea-
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sured values from the Atomic Mass Evaluation 2011 (AME11) [121]. The GXPF1A and
MBPT [119] results agree quite well with the data to N = 31. The CC [120] result also agrees
quite well with the GXPF1A and MBPT calculations, however, there is a large dip in the S2n

value at N = 31. The KB3G calculation agrees with the both data and the other calculations
until N = 30, where the KB3G values become systematically lower than the other calculations.

2.5 Testing χEFT forces: The isobaric multiplet mass
equation

The proton and neutron are both spin-1/2 particles and are nearly degenerate in mass. There
is, however, a striking difference between the two particles, which is their charge. Due to these
similarities, it is possible to consider the proton and neutron as members of a doublet in the
abstract isospin T space, where the proton has a z-projection of Tz = −1/2 and the neutron
has a z-projection of Tz = 1/2. This concept was originally proposed by Heisenberg [122].
Isospin is a good quantum number, thus for any nucleus the z-projection of the isospin of the
ground-state is given by

Tz =
N−Z

2
. (2.10)

For a given collection of protons and neutrons, there can be isospin configurations between

∣∣∣∣
N−Z

2

∣∣∣∣≤ T ≤ N +Z
2

. (2.11)

Thus, states with the same isospin in different isobaric nuclides form an isospin multiplet.
If the nuclear force is isospin independent, then the binding energy of states in an isospin

multiplet should be degenerate. Furthermore, the excited states of such nuclei should be similar.
As an example, figure 2.9 shows the A = 9 multiplets. Note the similarity of energy levels in
9Be and 9B, and between 9Li and 9C. A special case of this are the T = 1/2 and 1 “mirror
nuclei” (see [124, 125, 126] for examples), where two nuclides have the same mass number
but the number of protons and neutron are swapped. These nuclides sit on either side of the
N = Z line. Because the ground states of these nuclei have the same T , but opposite Tz, they
should have very similar structure in their excited states, as can be seen in figure 2.10 in the
ground state rotational band in 50Fe and 50Cr. The similarity of the two spectra demonstrates
that isospin is a symmetry of the nuclear interaction; however, the small differences point to an
isospin non-conserving interaction.

Isospin is an approximate symmetry, manifesting itself in the mass difference between the
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corresponding quantity for 9Be: here M represents the atomic mass excess in MeV. Levels which are presumed to be isospin multiplets are connected by dashed lines.

Figure 2.9: Measured energy levels for the A= 9 systems. The ground-state energy levels
have been shifted so that the isobaric multiplets lie at approximately the same en-
ergy. Isobaric multiplets are connected with dashed lines. The J = 5/2+, T = 3/2
ground-state multiplet has been highlighted in red. Figure reproduced with permis-
sion from [123].

proton and neutron. The isospin symmetry is also broken by the isospin-dependent part of
the nuclear Hamiltonian and the Coulomb interaction. These interactions break the symmetry
and lift the degeneracy of the isospin multiplet, but the largest contribution comes from the
Coulomb interaction. The Coulomb interaction in isospin space is

Vcoul = ∑
i< j

QiQ j∣∣ri− r j
∣∣ = e2

∑
i< j

(
1
2
− tz(i)

)(
1
2
− tz( j)

)
1∣∣~ri−~r j
∣∣ , (2.12)

where Q is the charge operator, e is the electron charge, and tz is the isospin operator. This can
then be expanded as a sum of isoscalar, isovector, and isotensor operators

V (0)
coul = e2

∑
i< j

(
1
4
+

1
3
~t(i) ·~t( j)

)
1∣∣~ri−~r j
∣∣ ,
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Figure 2.10: The level structure of the ground-state rotational bands in the T = 1 nuclei
50Fe and 50Cr. The arrows indicate a transition between the connected states, with
the transition energy listed in keV. The left labels are the Jπ of the state, the right
label are the excitation energy in keV of the state. Data from [124].

V (1)
coul =−

e2

2 ∑
i< j

(tz(i)+ tz( j))
1∣∣~ri−~r j
∣∣ ,

and
V (2)

coul = e2
∑
i< j

(
tz(i)tz( j)− 1

3
~t(i) ·~t( j)

)
1∣∣~ri−~r j
∣∣ ,

where~t is the isospin operator. The operator V (0)
coul does not depend on the operator Tz, while

V (1)
coul and V (2)

coul depends on the operators Tz and T 2
z , respectively.

If we treat the Coulomb interaction as a perturbation, the first-order energy shift is given by
the expectation value of the Coulomb interaction

Ecoul = 〈α,T,Tz|Vcoul |α,T,Tz〉 (2.13)

where α represents all of the good quantum numbers that do not depend on the isospin. Ap-
plying the Wigner-Eckart theorem [127], it is possible to extract the isospin dependence of the
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Coulomb energy shift,

Ecoul = 〈α,T,Tz| ∑
q=0,1,2

V (q)
coul |α,T,Tz〉 (2.14)

= ∑
q
(−1)T−Tz

(
T q T

−Tz 0 Tz

)
〈α,T,Tz| |V (q)

coul| |α,T,Tz〉 (2.15)

= E(0)
coul(α,T )+E(1)

coul(α,T )Tz +E(2)
coul(α,T )(3T 2

z −T (T +1)). (2.16)

where the Coulomb energy shifts are

E(0)
coul =

1√
2T +1

〈α,T | |V (0)
coul| |α,T 〉

E(1)
coul =

1√
T (2T +1)(T +1)

〈α,T | |V (1)
coul| |α,T 〉

E(2)
coul =

1√
T (2T +3)(2T +1)(T +1)(2T −1)

〈α,T | |V (2)
coul| |α,T 〉

The double-bar elements are reduced matrix elements, indicating that they are independent of
Tz. The Tz dependence can be factored out, leading to a quadratic relationship [128]

ME(A,Tz) = a(α,T )+b(α,T )Tz + c(α,T )T 2
z . (2.17)

This equation is called the Isobaric Multiplet Mass Equation (IMME), first introduced by E.
Wigner. The a term is the mass excess of the Tz = 0 for integer T multiplet. In the cases of
half-integer T , the a term is related to the difference E(0)

coul−T (T +1)E(2)
coul. The b term depends

on the expectation value of V (1)
coul and gives the largest contribution to the IMME. The c term

depends on the expectation value of V (2)
coul and describes the interaction between states that differ

by two units of isospin.
An intuitive understanding of the b and c terms can be gained by considering the energy of

a uniformly charged sphere with radius R = r0A1/3

Ecoul =
3e2

5R
Z(Z−1) (2.18)

=
3e2

5r0A1/3

(
A
4
(A−2)+(1−A)Tz +T 2

z

)
(2.19)
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Fig. 1. (Color online) The b coefficients of the quadratic IMME (8) as a function of A2/3 for all T = 1/2, 1, 3/2, and 2multiplets. A weighted fit to b coefficients, b = �690.98
(±89)A2/3+1473.02(±93) (keV) is displayed by the solid line. The dashed line shows the unweighted fit to b coefficients, b = �726.64A2/3+1952.7 (keV). The dash–dotted
line is b = � 3e2(A�1)

5r0A1/3
. The double-dot–dashed line is b = � 3e2

5r0
A2/3.

b(↵, T ) = �nH � E(1)
coul(↵, T ) and,

c(↵, T ) = 3E(2)
coul(↵, T ). (9)

The neutron–hydrogen mass (or mass excess) difference is
�nH = Mn � MH = 782.34664 keV.

Obviously, charge-dependent forces of nuclear origin of a two-
body type can be treated in the samemanner, so the form of Eq. (8)
stays valid.

2. Compilation of IMME

Over recent years, more experimental data of higher precision
on nuclear mass excess and level schemes have been accumu-
lated for most of the N ⇡ Z nuclei, in particular, for nuclei with
mass number ranging from A = 41 to 71. Incorporating all re-
cent mass measurements from the evaluation [6] and experimen-
tal level schemes [7], we have revised and extended the database
of IMME coefficients compiled previously by Britz et al. [8]. The to-
tal number of multiplets presented in our work incorporates 382
doublets, 132 triplets, 25 quartets, and 7 quintets. In particular, it
includes recent experimental data on pf -shell nuclei. This new set
of IMME a, b, c (and d, e, defined below in Section 4) coefficients is
listed in Tables 1–4. The b, c , and d coefficients (sometimes for the
lowest-lyingmultiplets only) are also shown in Figs. 1–4, Figs. 5–7,
and Fig. 8, respectively.

As seen from Eq. (8), a and b coefficients for doublets1 and a, b,
and c coefficients for triplets can be determined in a unique way
from the exact solution of a system of two and three linear equa-
tions for two or threemultipletmembers, respectively. For triplets,
the a coefficient is equal to the mass excess of the Tz = 0 nucleus,
so it is not mentioned separately in Table 2.

In principle, knowledge of three mass excesses from a given
quartet or quintet is also sufficient to determine the a, b, and c
coefficients of the quadratic IMME. However, we do not consider

1 There are no c coefficients for doublets.

such incomplete multiplets. In the present compilation an isobaric
multiplet is taken into consideration only if the mass excesses of
all multiplet members are known experimentally. To this end, the
a, b, and c coefficients of the quadratic IMME, Eq. (8), are obtained
by a least-square fit to four or five mass excesses for a quartet or
for a quintet, respectively.

3. IMME b and c coefficients

3.1. Uniformly charged sphere estimates

Before we discuss the trends of the experimental b and c
coefficients, let us recall a simple model prediction. If we assume
that the Coulomb interaction is the only contribution shifting
isobaric-analogue states, forming an isobaric multiplet, and treat
a nucleus as a uniformly charged sphere of radius R = r0A1/3, the
total Coulomb energy of a nucleus is given by

Ecoul = 3e2

5R
Z(Z � 1)

= 3e2

5r0A
1
3


A
4
(A � 2) + (1 � A)Tz + T 2

z

�
. (10)

Putting this expression into the IMME form, one can get the follow-
ing estimates of the IMME b and c coefficients [9–11]:

b = �3e2

5r0

(A � 1)

A
1
3

, c = 3e2

5r0

1

A
1
3
, (11)

where e2 = 1.44 MeV fm.
Using the approximation Z(Z � 1) ⇡ Z2, one can get instead of

the first equation in Eq. (11) an even simpler, often used expression
for the b-coefficient [12]:

b = �3e2

5r0
A2/3. (12)

These crude estimates of the Coulomb contribution to the b and c
coefficients are shown in Fig. 1 and Figs. 6–7, respectively.

Figure 2.11: b-coefficients of the IMME (eq. 2.17) as a function of A2/3 for the
T = 1/2,1,3/2,2 multiplets. The solid line is a weighted fit with b =
−690.98(±89)A2/3 + 1473.02(±93) (keV), the dashed line is an unweighted fit
with b =−726.64A2/3+1952.7 (keV), the dash-dotted line is b =−3e2(A−1)

5r0A1/3 , and

the double-dot-dashed line is b = −3e2

5r0
A2/3. Figure reproduced with permission

from [129].

where we have used Z = A/2−Tz. The b and c coefficients are then

b =−3e3

5r0

(A−1)
A1/3 , c =

3e2

5r0

1
A1/3 . (2.20)

From these simple estimates, the b term is by far the leading contribution to the IMME, as
generally A >> Tz or T 2

z . The general scaling of b by A2/3 and c by A−1/3 can be seen in the
trend of the fitted b and c terms [129]; however this simple picture of the Coulomb energy
shift does not reproduce all of the observed features. Figure 2.11 shows the behavior of the
b-coefficients with respect to A2/3. The simple b term derived in equation 2.20 reproduces the
overall slope seen in the experimentally determined b values, however, there seems to be an
overall offset of ≈ 1500 keV.
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Fig. 7. (Color online) The c coefficients of the lowest, first excited and second excited triplets as a function of A�1/3. The solid (red) line connects the lowest-lying triplets’
c coefficients. The (blue) double-dot–dashed line links (blue) dots which display the first higher-lying triplets’ c coefficients. The dotted line links triangles which represent
the second higher-lying triplets’ c coefficients. The (black) dashed line is c = 3e2

5r0
A�1/3.

Fig. 8. (Color online) The experimental d coefficients as a function of A for all quartets and quintets. These d coefficients are defined by the cubic IMME (Eq. (13) with
e = 0). The (blue) dots and (red) squares are d coefficients of the lowest-lying quartets and quintets, respectively; whereas (black) triangles are d coefficients of higher-lying
quartets.

rately the experimental c coefficients for the lowest-lying triplets
(upper panel) and quartets and quintets (lower panel) as a function
ofA�1/3. Dashed straight lines indicated in the figures represent the
estimate deduced from a classical homogeneously charged sphere,
Eq. (11). For the lowest-lying triplets’ and quintets’ c coefficients,
indicated as red triangles and red squares, respectively, this classi-
cal assumption is roughly valid. However, no clear dependence can
be seen for quartets (Fig. 6, lower panel), or for the known higher-
lying quartets’ c coefficients (not shown in the figures).

Figs. 5–6 give evidence that the c coefficients of triplets hav-
ing A = 4n and A = 4n + 2 form two distinct families. A regu-
lar staggering effect is clearly visible. Quintets in the sd-shell space

also show a small staggering behavior when they are plotted as a
function of A�1/3 in Fig. 6. No oscillatory behavior can be noticed
in quartets’ c coefficients.

The staggering also takes place in higher lying triplets, as shown
in Fig. 7. In this figure, we connect by solid, dash–dotted and dotted
lines for the lowest, first, and second excited triplets, respectively.
These lines stop as soon as there are breaks in experimental data
points (e.g., absence of data for A = 44, 52, 56 triplets). In addition,
the ground state multiplet (J⇡ = 2+) of the A = 8 triplet is not
considered in our work due to well confirmed large isospin mixing
between two neighboring 2+ states in 8Be at 16.626 MeV and at
16.922 MeV excitation energy. Two higher lying triplets, J⇡ = 1+

Figure 2.12: Experimental d coefficients from the cubic form of the IMME, for all quar-
tets and quintets. The blue dots and red squares are the d coefficients of the lowest-
lying quartets and quintets, while the black triangles are the d coefficients of higher
lying quartets. Figure reproduced with permission from [129].

This offset of≈ 1500 keV can be corrected for by including the difference in mass between
the proton and neutron. Nuclei with higher Tz should be heavier than nuclei with lower Tz. The
b-term now becomes

b = ∆nH−
3e3

5r0

(A−1)
A1/3 . (2.21)

The mass difference ∆nH = 782 keV, which is the mass difference between the neutron and
hydrogen atom, corresponds to half of the difference needed to correct the shift in binding
energies.

It may be that the quadratic form of the IMME can not explain the measured mass excesses,
and quartic d and quintic e terms may be required. For example, large deviations from the
IMME have been observed in the A= 9 Jπ = 3/2+ and A= 33 and 35 Jπ = 3/2+ quartets [130,
131, 129] and in the A= 8 and 32 quintets [132, 133, 134]. These higher order terms could arise
from isospin mixing between nearby states, second-order Coulomb effects [129], or missing
3N interacitons. It is precisely these effects that provide a stringent test of theory.
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In the extended IMME, where d and e terms are considered, the d and e terms may be
directly determined for IMME quartets and quintets, respectively. In an isospin quartet, the d

term is given by

d =
1
6
(−ME(Tz =−3/2)+3ME(Tz =−1/2) (2.22)

−3ME(Tz = 1/2)+ME(Tz = 3/2))

and the d and e coefficients in an isospin quintet are given by

d =
1
12

(−ME(Tz =−2)+2ME(Tz =−1) (2.23)

−2ME(Tz = 1)+ME(Tz = 2)),

e =
1
24

(ME(Tz =−2)−4ME(Tz =−1) (2.24)

+6ME(Tz = 0)−4ME(Tz = 1)+ME(Tz = 2)).

The uncertainty of these terms can be found by a simple propagation of errors. In general,
the experimental d terms are consistent with zero, except in a few cases as mentioned above.
Figure 2.12 shows the experimental d terms for all known isospin quartets and quintets. It is
remarkable that, except in a handful of cases, the experimental d terms are all close to zero.

2.5.1 Two-level mixing and the d term
The primary cause of the d term is from two-level mixing of nearby states with the same
spin but different isospin. This causes the perturbed wave functions to have a mixed isospin
character; thus the state no longer belong to the isobaric multiplet. As an example, we take
two nearly degenerate states with a matrix element V connecting them [135]. The good wave
functions can then be found by diagonalizing the matrix

(
E V

V E +∆

)
(2.25)

where E is the energy of one state and ∆ is the difference in energy. The eigenvalues are

λ = E +
∆

2
± 1

2

√
∆2 +4V 2. (2.26)

The resulting energy shift is quite complicated because of interference between the Coulomb,
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isovector, and isotensor parts of the isospin non-conserving interactions. Such a mechanism
has been employed in the A = 9 isospin quartet [130], and it was shown to be the main driver
for the observed d-term.

2.5.2 Testing the IMME
Historically, the quadratic behaviour of the IMME has been confirmed in a number of experi-
ments. However, much of the data – ground state and excitation energies – tend to have quite
large uncertainties, limiting the precision of the investigation of isospin-symmetry-breaking
effects in nuclei. For example, understanding these isospin-symmetry-breaking effects is im-
portant for calculations of the isospin-symmetry-breaking correction δC in super-allowed Fermi
beta decays [136]. It has only been in recent years, with the advent of Penning trap mass spec-
trometers, that some of the IMME multiplets have been found to deviate from the quadratic
form of the IMME.

In order to test the predictions of both effective interactions and χEFT interactions we have
measured the masses of 20,21Mg, which are the most proton-rich members of the A = 20, T = 2
isospin quintet and the A = 21, T = 3/2 isospin quartet. The test of the χEFT based interaction
is quite interesting as this is the first time this interaction will be tested with both active protons
and neutrons in the valence space.
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Chapter 3

Experimental setup

TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN) is located in the Isotope Sepa-
rator Accelerator (ISAC) [137] facility at TRIUMF in Vancouver, British Columbia. TITAN
currently consists of three ion traps: (1) a Radio-Frequency Quadrupole (RFQ) cooler and
buncher, used to prepare the beam from ISAC, (2) an Electron Beam Ion Trap (EBIT), used to
charge breed the beam to increase the achievable precision of a mass measurement, and (3) a
Measurement Penning Trap (MPET), used to perform high precision mass measurements on
short-lived (t1/2 / 100 ms) nuclides. A schematic outline of the TITAN system is shown in
figure 3.1. From its first operation in 2007, TITAN has focussed on measuring the masses of
halo nuclei. For example, TITAN has measured the masses of the halo nuclei 6,8He [138],
11Li [67] and 11Be [139]. Beryllium-12 [140] is an interesting case as the halo state is not the
ground state, but instead is an excited state [141]. Since then, TITAN has conducted several
measurement campaigns of medium mass nuclei to investigate such phenomena as the Island of
Inversion [142, 143], the presence of deformation in potential r-process nuclei in the neutron-
rich Rb and Sr isotopic chains [144, 145], measuring the 71Ge-71Ga Q-value to calibrate the
SAGE and GALLEX neutrino detectors [146], and measuring the mass of 74Rb [147] to test
the unitarity of the CKM matrix.

Two properties distinguish TITAN from other on-line Penning Trap Mass Spectrometry
(PTMS) systems: The ability to charge breed exotic beams leads to increased precision and
resolving power. The unique combination of production source and MPET injection optics
permit measurements of the shortest-lived nuclides at TITAN. These qualities are exemplified
by the mass measurement of 11Li, whose half-life of 8.8 ms, is the shortest lived nuclide to
have its mass measured in a Penning trap.

The precision of a PTMS measurement is inversely proportional to the charge state of the
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off-line ion source

SCI

SCI

a) SCI

SCI

b) HCI

Figure 2.2: The TITAN experimental setup which includes a RFQ, a high-
precision Penning trap, an EBIT and an o�-line ion source. a) Shown in
red is the path of the beam when mass measurement on singly charge ions
(SCI) is performed. b) In blue is the path for highly charged ions (HCI)
mass measurement.

gas-filled linear radio-frequency quadrupolar (RFQ) trap ([Smi06, Smi08a]).
The subsequent step depends on whether a mass measurement using singly
charged ions (SCI), or highly charged ions is performed. The ions can either
be transferred to an electron-beam ion trap (EBIT) [Fro06], where charge
breeding takes place (blue path in figure 2.2) or directly sent to the Penning
trap (MPET) where the mass of the ion of interest is determined (red path
in Figure 2.2).

In this chapter, we present how an ion beam is produced and delivered
by the ISAC facility, how the beam preparation devices (i.e. the RFQ, the
EBIT and the transport optics) are employed, and how the mass of an ion
is determined by the TITAN Penning trap. The Penning trap is presented
in more detail as this device is at the core of this thesis.

2.1 Beam production and separation at ISAC

The Isotope Separation and ACceleration (ISAC) facility produces radioac-
tive ion beams by the Isotope Separator On-Line (ISOL) method [Dom02].
In this well-established method, unstable ions are produced by bombarding
a thick target, such as the one shown in figure 2.3, with a 500 MeV con-
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Figure 3.2: Schematic of the experimental setup of TRIUMF’s Ion Trap for
Atomic and Nuclear science (TITAN). The different paths for SCI (a)
and HCI (b) are marked.

lenges of highly charged, radioactive nuclides to explore the advantages of HCI.
A schematic overview of the TITAN facility is shown in Figure 3.2. The radioac-
tive beam of SCI from ISAC is injected in a RFQ cooler and buncher [134, 135]
which is floated just below (�V ⇡ 5 � 20 V) the ISAC beam energy to deceler-
ate and to trap the beam. Buffer gas cooling takes place through collisions with
He or H2 gas, which thermalize the ions to room temperature while an oscillat-
ing Radio-Frequency (RF) field provides radial confinement. The net result is an
overall cooling of the ‘hot’ ISAC beam. In addition, a longitudinal electrostatic
potential leads to a confinement which allows the continuous beam from ISAC to
be accumulated in the RFQ. Ions are extracted from the RFQ by opening the con-

73

Figure 3.1: Rendering of TITAN. Beam is delivered from ISAC or the TITAN ion source
to the RFQ. Singly charged ions (SCI) are sent either to EBIT, for charge breeding
and decay spectroscopy, or to MPET. Highly charged ions (HCI) can be extracted
from EBIT and sent to MPET for precision mass measurements.

ion [148]
δm
m

∝
m

qBTRF
√

N
(3.1)

where q is the charge state of the ion, B is the magnetic field strength of the trap, TRF is the
excitation time of the ion, and N is the number of detected ions. Several factors conspire to
limit the achievable precision in on-line mass measurements: (1) the magnetic field strength
B is limited—large homogeneous magnetic fields represent a technological challenge, (2) the
excitation time TRF is limited by the half-life of the nuclide, and (3) N is fixed both by the yield
of the ion of interest and the limited access to online beam time at rare isotope beam facilities.
These limitations can be overcome by charge breeding, the process of removing electrons from
the trapped beam through impact ionization with the electron beam, in the EBIT. An increase
in the charge state q leads to an increase in the achievable precision, and also greatly shortens
the measurements time (≈ TRFN) to reach a given precision. For example, in 22 hours the
TITAN measurement of 74Rb in a charge state q = 8+ [147] achieved a precision comparable
to that of the ISOLTRAP system [149], which needed more than 150 hours of data collection
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using singly charged ions [150].

3.1 Beam production
Currently there are two primary methods for producing exotic beams: the fragmentation of
heavy ion beams on a thin target, called in-flight fragmentation [151, 152], and the spallation
and fragmentation of a thick, high-temperature target by a light beam, called Isotope Separa-
tion on-line (ISOL) [152]. In-flight fragmentation has the ability to produce any beam, as it is
essentially free of chemistry effects, because the high-energy secondary beam cannot chemi-
cally react with the target material. While wide in its reach, in-flight fragmentation can suffer
from low yields of the nuclide of interest, especially for nuclei far from the valley of stability.
On the other hand, ISOL facilities can have very high yields, even for beams far from stability.
Nevertheless, these high yields quite often suffer losses due to in-target chemistry effects/re-
actions (such as binding to the lattice of the target material), because the reaction products are
produced nearly at rest with respect to the target, and must diffuse to the target surface to be
ionized and extracted. Several other niche production methods are in use, notably the CARIBU
facility [153] at Argonne National Laboratory, where the spontaneous fission products from the
decay of 252Cf are caught in a gas cell, and the ion guide isotope separator on-line (IGISOL)
facility [154] at JFYL in Jyväskylä, Finland, in which fission products from the reaction of pro-
tons on U or Th targets are caught in a gas cell. At both CARIBU and IGISOL, the produced
beam does not need to diffuse out of a thick ISOL target, greatly reducing in-target losses due
to chemistry.

Stopped beam experiments at fragmentation facilities can also be affected by chemistry.
The high-energy beams are stopped in a gas cell, usually filled with a He buffer gas to slow the
beam through collisions. The stopping beam creates a harsh environment, with large amounts
of space charge, allowing the beam and buffer gas impurities to form exotic molecules. Many
times these molecules are close in mass to the beam of interest, which can be a problem for
Penning-trap-based experiments due to contamination effects.

3.2 ISAC
At TRIUMF beams are produced by bombarding a thick production target with a high-current,
high-energy (up to 100 µA at 480 MeV) proton beam. A schematic of the ISAC target and
extraction front end are shown in figure 3.2. The target material is composed of many foils,
stacked along the beam axis, helping to speed the diffusion of the fragments to the surface of
the target material. To further speed diffusion of the fragments, the tube housing the target
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2.1. Beam production and separation at ISAC

tinuous proton beam coming from the TRIUMF cyclotron. The current on
target of that beam can go as high as 100 µA. Once produced, di↵erent nu-

Figure 2.3: The ISAC production and separation room. This room includes
two target stations, target and ion sources, a pre-separator and a high-
resolution (m/�m = 3000) magnet separator. Also shown is a rendering of
the target and a surface ion source.

clei di↵use out of the target and are then ionized by an ion source [Dom02].
Subsequently, the ionized isotopes are extracted and formed into a beam
which is electrostatically accelerated to an energy of 12 to 60 keV. It is later
guided to a two-stage dipole magnet separator that include a pre-separator
and a high-resolution magnet separator (figure 2.3). This separates and se-
lects the ions of interest according to their mass-to-charge ratio (m/q) at a
resolving power of typically m/�m = 3000. Finally, the separated beam is
delivered to the ISAC hall where various experiments are located.

The two species of interest to this thesis, 6He and 8He, are produced
using a SiC target and ionized by the so-called Forced Electron Beam Ion
Arc Discharge (FEBIAD) source [Bri08]. Using this technique, ionization is
done via a plasma generated by injecting atomic gas into a chamber where
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Figure 3.2: Overview of the ISAC target and dipole separation magnet. Figure
from [155].

is ohmically heated to ≈ 2000◦C. It is during this diffusion that chemistry can occur: the
synthesized radio-nuclides may chemically bind to the target material and will not be released,
or the ionization potential of the desired element is not suitable to the ion source, resulting
in no ionized beam. The produced rare isotopes are released from the target’s surface and
travel in a random walk to the target exit. Here a heated tube that is coated with a high-work-
function material, typically rhenium, surface ionizes the beam, allowing species with ionization
potentials below approximately 6 eV to be ionized [156]. Atoms are surface ionized by being
desorbed from a hot surface, and in the process are spontaneously ionized. Many species, such
as refractory elements and gases, can not be readily ionized in such a scheme. For example,
phosphorous is a very reactive element and will readily react with the target material, and be
bound to the target. Gases, such as the halogens and noble gases, have very high ionization
potentials so a special ionizer, for example a forced electron beam ion arc discharge [157],
must be used to ionize the beam. Elements, such as the alkaline earth metals and the transition
metals, with ionization energies between 6-9 eV are not efficiently surface ionized, instead,
they can be laser ionized, as discussed in section 3.2.1.

Once the beam is ionized and extracted from the target, it is electrostatically accelerated to
energies between 10−60 keV. The desired isotope is then selected by passing the beam through
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FIGURE 1: Laser excitation schemes used for Mg RIS. The most efficient scheme uses an auto-
ionizing state (AI). The transition into the AI is saturated with merely 5mW UV laser light inside the 

3mm in diameter ionization region of the TRIUMF target ion source transfer tube. The cross section of 
the TRIUMF target ion source module indicates to scale, the target container and the ionization region 

for RILIS. The ions are extracted from a source potential at 20kV to 60kV. 

TRIUMF RESONANT IONIZATION LASER ION SOURCE 

At TRIUMF the laser laboratory is located about 20m from the target-ion source. 
Initially the lasers were at 15m, however, at proton beam intensities above 70|j,A 
occupancy of the area had to be restricted due to high neutron fluences. Therefore the 
laser laboratory location was relocated further away in the ISAC experimental hall. 
Laser beam transport is from the laser table down trough the Bl level to the B2 mass 
separator level as shown in figure 2. In order to maintain pressure zoning, anti-
reflection coated windows are used in the 6 individual laser beam transport paths. On 
the mass separator level the beams are focused over a distance of 10m into the 
ionization region, and overlapped in line of sight of the target ion source with 
dielectric mirrors. Additional shielding separates the mass separator from the target 
ion source and pre-separator magnet with the laser view-port so that personnel access 
to the optics in the mass separator area is possible then the proton beam is disabled. In 
line of sight to the target a coUimated beam of residual activity (mainly y-radiation of 
about 2mSv/h) remains when the port shielding is removed and the irradiated target is 
in place. This setup is depicted in figure 2. 

Cleanliness requirements for RILIS laser beam transport are also important for low 
maintenance operation and optics lifetime. An IS06 or similar class clean room 
environment for the laser laboratory is a good environment for sensitive, high power 
dielectric optics. To extend this the laser beam transport path can be either enclosed in 
high vacuum type beam tubes, areas with laminar flow-fan filter unit supplied air, and 
sealed surfaces. Concrete surfaces must be sealed everywhere en route, in order to 
avoid optics contamination - especially in hard to access, high radiation areas, which 
in general have vast amounts of concrete shielding. 
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Figure 3.3: Laser ionization schemes for magnesium (Z = 12). Only the states relevant
to the ionization scheme are shown. The rightmost scheme is the most efficient.
Figure reproduced with permission from [158].

a dipole magnet, which separates the beam based on m/q. The dipole separator has a resolving
power of m/∆m≈ 3000, which is sometimes sufficient to select the element of interest from the
contaminants; however, often this resolving power is insufficient for providing a pure beam.
These background contaminants can render many experiments impossible due to extremely
bad signal-to-contaminant ratios. A new ion source technique, discussed in section 3.2.1, has
been developed to confront these issues.

3.2.1 TRIUMF resonance ionization laser ion source and the ion-guide
laser ion source

For certain elements that may not be efficiently surface ionized, it is possible to use a Reso-
nance Ionization Laser Ion Source (RILIS), by inducing transitions to auto-ionizing states in the
element of interest, provided that a suitable ionization scheme is known. By using step-wise
excitation to the auto-ionizing state, element specific ionization is achieved. Since the laser
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Figure 3.4: Schematic of the ISAC target with IG-LIS. Surface ionized species are
stopped by the repeller, while neutral atoms can drift into the RFQ volume. Res-
onant laser ionization ionizes only the element of interest, allowing dramatic in-
creases in beam purity. Figure from [162].

ionization is element specific, while the mass separator selects on the mass number A, their
combination represents a powerful approach to producing isotopically pure beams. As an ex-
ample, the demonstrated ionization schemes for Mg are shown in figure 3.3. At ISAC the TRI-
UMF’s Resonance Ionization Laser Ion Source (TRILIS) source uses three frequency tunable
titanium:sapphire (Ti:Sa) lasers that are pumped by a frequency doubled Nd:YAG laser [158].
The Ti:Sa laser can be frequency doubled, tripled and quadrupled to nearly cover the wave-
length range 200− 1000 nm [158, 156]. Once the most efficient ionization scheme has been
found, the total efficiency of the laser ionization system most strongly depends on the available
laser power for a given wavelength. At TRILIS for the ionization of Mg, the first ionization
step (285.3 nm) is nearly saturated, while the second ionization step (880.9 nm) is fully satu-
rated [159]. Increasing the laser power in either of these transitions would have a small effect
on the overall ionization rate. However, the final ionization step (291.6 nm) is not saturated,
and can benefit from any increase in laser power. The RILIS technique has been successively
used at many ISOL facilities, such as ISOLDE [160], IGISOL [161], and ISAC [158].

In some cases the number of surface-ionized contaminants still overwhelms the RILIS-
produced beam. To overcome this, a new ion source has been developed at TRIUMF, the Ion
Guide Laser Ion Source (IG-LIS) [159], which is a variation of the originally proposed laser
ion source trap (LIST)[163, 164]. In both cases, a repeller electrode is located at the exit of the
target, preventing surface-ionized species from leaving the target volume, allowing only neu-
tral species to drift into an ion-guide volume. The neutral atoms are then exposed to laser light
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Figure 3.5: IG-LIS yields measured during the 20,21Mg experiment. Open circles are
yields measured with a previous surface ion-source target, filled circles are the
yields measured with IG-LIS. The Na yields are reduced by a factor of ≈ 106,
while the Mg yields are reduced by ≈ 10. Data from [159].

which provides the element specific ionization, suppressing the background contaminants by
many orders of magnitude. The LIST source uses an RFQ buncher to bunch the laser-ionized
beam coming from the target, creating an ion bunch with well defined beam properties. Beam
bunching also results in more brilliant beams for reaction experiments. By synchronizing the
data acquisition to the extraction pulse, these reaction experiments can reduce backgrounds
coming from any “leaky” beam escaping the trap. The IG-LIS source does not trap the beam
longitudinally, instead the RFQ is used as an ion-guide to radially confine and guide the beam
to the extraction electrode. A schematic of IG-LIS is shown in figure 3.4. During the present
20Mg experiment, IG-LIS improved the signal-to-contaminant ratio by more than a factor of
104. Figure 3.5 summarizes the IG-LIS yield measurements for the laser-ionized species mag-
nesium, and the surface-ionized species sodium. These species provided an excellent test of
IG-LIS’s ion suppression capabilities. On the proton-rich side of stability, the alkali metal
sodium is closer to stability than magnesium, meaning the sodium will be produced in much
larger quantities than magnesium. As seen in figure 3.5, the sodium yields could be suppressed
by up to 6 orders of magnitude. IG-LIS also reduces the magnesium yield by approximately
one order of magnitude due to both shorter ion-laser interaction times in the short IG-LIS vol-
ume and the suppression of any surface ionization of the beam of interest; however, for many
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2.2. Beam preparation: the radio-frequency quadrupole (RFQ) cooler and buncher
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Figure 2.4: Top: Schematic sideview of TITAN’s RFQ which is composed
of four 24-segmented rods that create a longitudinal trapping potential. A
well allows for beam accumulation and subsequent bunching. A square-
wave RF is applied to the opposite segments to provide radial confinement.
Bottom: Schematic potential distribution for accumulation (solid line) and
bunch extraction (dashed line).

beam with ✏99% = 50 ⇡ mm mrad transverse emittance at 60 keV energy
[Smi08a]. The transverse emittance of the beam leaving the RFQ is ap-
proximately ✏99% ⇡ 10 ⇡ mm mrad at 1 keV. The measured full width half
maximum (FWHM) of the beam energy spread at this energy is typically
around 6 eV [Cha09].

The typical bu�er gas used to cool the beam is helium, due to its inert
nature and light mass allowing favorable momentum transfers for e�cient
energy spread dissipation. However, for the 6,8He mass measurements the
beam was cooled using hydrogen to avoid resonant charge exchange reac-
tions. Figure 2.4 shows that the TITANs RFQ is composed of a four rod
structures on which a radio-frequency quadrupolar field is applied to create
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Figure 3.8: Top: Schematic of the longitudinal segmentation of TITAN’s RFQ

into 24 sections. The segment number is indicated at the top. Bottom:
Schematic of the typically applied potential. The DC field drags the
buffer gas cooled ions to the minimum of the trapping potential (solid
line). The beam is extracted in ion bunches by switching the potentials
of the electrodes 22 and 24 (dashed-line). Figure from [146].

.

tor which damps the RF to protect the DC power supplies.
An effective net buffer gas cooling in an RFQ takes place when the mass of the
ion is larger than the coolant gas particles [165, 168]. In the presence of an RF-
field for trapping, a drastic change in energy would disturb the ion’s micro-motion
significantly and bring the motion out of phase with the RF-field. Hence, if the
mass of the coolant is larger than the ion’s mass the energy of the ion is on average
increased, an effect which is referred to as RF-heating [169]. In a buffer gas of
lighter masses, little momentum is transferred per collision, and the disturbance of
the micro-motion is less relevant. As a consequence the harmonic, macro-motion
can be damped while keeping the micro-motion coherent to the external RF-field.
The average, relative energy change per hard-sphere collision (Figure 3.10) follows
[168]

< ✏ >= 
1 � 

(1 + )2
(3.1)

83

Figure 3.6: (top) Axial segmentation allows for a drag and trapping field to be created.
Segments 22 and 24 are switched for ejection. (bottom) Axial field in the RFQ
during trapping and ejection. Figure reproduced with permission from [155].

applications this is more than compensated by the large background suppression. There is a
limit to the achievable suppression, as neutral contaminant ions can also drift in to the IG-LIS
volume, and become ionized due to the hot electrode surfaces, resulting in background rates of
100−1000 ions/second. This is generally only a problem when the contaminant beam yield is
many orders of magnitude more than the beam of interest.

3.3 TITAN

3.3.1 TITAN RFQ cooling and bunching
At TITAN, the ISAC beam is first delivered to the radio-frequency quadrupole (RFQ) linear
Paul trap cooler and buncher [165]. The RFQ is biased several volts below the beam energy
so that the beam enters with little energy. Through collisions with the helium buffer gas, the
overall beam emittance is reduced, a requirement for precision mass measurements. Further-
more, the beam delivered from ISAC is continuous, so the RFQ bunches the beam permitting
efficient injection into either EBIT or MPET.
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TITAN’s RFQ is segmented into 24 axial electrodes, each of which can be individually
biased to create an axial drag field to pull ions into a potential well. The potential well at
segment 23 provides axial confinement, while transverse confinement is provided through the
application of a quadrupole RF field on the RFQ electrodes. A schematic of the electrode
structure and the applied potentials during injection and extraction is shown in figure 3.6. The
radio frequency is driven by a square wave with frequencies up to 1.2 MHz and peak-to-peak
amplitudes up to 400 Vpp. The inner radius of the radio frequency rods is r0 = 11 mm, and the
total length of the RFQ is 700 mm. To cool the beam, a He buffer gas is introduced to the RFQ
volume at a pressure of ≈ 0.01 mbar. Helium is chosen for two reasons: First, the ionization
energy of He is 24 eV which reduces the probability of charge exchange reactions, and second,
He is much lighter than most isotopes measured using TITAN, which is beneficial for cooling.
If the buffer gas is heavier than the injected beam, the energy of the injected beam increases in
a process called RF-heating [166, 167]. For a model using so-called hard-sphere collisions in
a Paul trap, the average energy transfer to the beam ion can be calculated as [167]

〈εRF〉= κ
κ−1

(1+κ)2 (3.2)

where κ = M/m is the ratio of the buffer gas with mass M and the beam particle with mass m.
For 0< κ < 1 the beam will be cooled, but for κ > 1 the beam will gain energy. For beams with
A < 12, a buffer gas of H2 is used instead of He, increasing the extraction efficiency by nearly
a factor of 2 [165]. Once the ions are thermalized with the buffer gas, a process taking several
milliseconds, they are ejected from the RFQ by quickly changing the voltages on segments 22
and 24. The beam is then accelerated to 1− 2 keV to the pulsed drift tube, where the beam
is then pulsed to ground. The RFQ has an overall transfer efficiency of between 7− 15%,
depending on the beam used. Alkali metals typically have the highest efficiencies because
they do not react with impurities in the buffer gas, while a beam of noble gases does react
with impurities in the buffer gas, resulting in greatly decreased efficiencies. The probability
for charge exchange can be reduced by decreasing the overall cooling time, however, this both
reduces the total cooling time, potentially affecting the beam quality and it also reduces the
total accumulation time, leading to a reduction in the total efficiency.

The potential felt by the ions in the well formed at electrode 23 is

Φ(x,y,z; t) =
ψ(t)

r2
0

(
x2− y2)+ Uendg

z2
0

(
2z2− x2− y2) (3.3)

where ψ(t) is a time-varying RF-signal, Uend is the axial trap depth, r0 is the distance from the
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axis to the outside of a rod, z0 is the length of the trapping electrode and g is a geometric factor.
The first term provides radial confinement, while the second term provides axial confinement.
In essence, this is a combined linear mass filter and Paul trap, and it is given the name of linear
Paul trap [168, 169]. This differs from a Paul trap in that the trapping potential Uend is held
constant in a linear Paul trap, while in a Paul trap it is a function of time. A general choice for
ψ(t) is

ψ(t) =Udc−URFS(Ωt) (3.4)

where UDC is a potential offset applied between adjacent rods, URF is the amplitude of the time
varying field S(Ωt), and Ω is the angular frequency of the field. We introduce the dimensionless
time parameter ξ = Ωt/2 to simplify the following derivations. This leads to the following
equations of motion

∂ 2x
∂ξ 2 +(ax +aend−2qxS(2ξ ))x = 0 (3.5)

∂ 2y
∂ξ 2 +(ay +aend−2qyS(2ξ ))y = 0 (3.6)

∂ 2z
∂ξ 2 −2aendz = 0 (3.7)

with

au = ax =−ay =
8qeUdc

mr2
0Ω2 (3.8)

qu = qx =−qy =
4qeURF

mr2
0Ω2 (3.9)

aend = −8qeUendg
mz2

0Ω2 . (3.10)

An important note is that for positive ions aend is always negative [170]. If Uend is negative, the
axial potential becomes a hill, causing ions to be lost axially. If we now introduce the effective
term a′u = au + aend, we can write the radial equations of motion in the well known Mathieu
form

∂ 2u
∂ξ 2 +(a′u−2quS(2ξ ))u = 0 (3.11)

where u corresponds to either the x or y solution. This is slightly different from the normal
Mathieu equation due to the extra aend term. These are the same equations for a linear mass
filter; however, ax and ay are shifted up by −aend.

Several methods exist to solve the Mathieu equations. As the time-varying signal is peri-
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odic, the solution lends itself to matrix methods. The transition matrix of the RF field moves
the initial position and velocity of the particle to the final position and velocity

(
xn+1

vn+1

)
= M ·

(
xn

vn

)
= Mn ·

(
x0

v0

)
(3.12)

where x0 and v0 are the initial position and velocity of the ion, and xn and vn are the position
and velocity after n applications of the periodic waveform. We can rewrite this using the
eigenvectors ~mi and eigenvalues λi of M

(
xn

vn

)
= Mn ·

(
x0

v0

)
=C1λ

n
1~m1 +C2λ

n
2~m2. (3.13)

where the Ci’s describe the ion’s initial conditions in terms of the eigenvectors of M. If an
ion’s motion is to be stable, the position and velocities must remain finite as n→ ∞, requiring∣∣λ1,2

∣∣≤ 1. The eigenvalues of M are

λ1,2 =
Tr{M}

2
± i

√
|M|−

(
Tr{M}

2

)2

. (3.14)

From Liouville’s theorem (valid without buffer gas as the forces are conservative), the total
phase space area of the ion bunch in the RFQ must be conserved, so the determinant of M must
be 1. Substituting s = Tr{M}/2 the eigenvalues become

λ1,2 = s± i
√

1− s2. (3.15)

There are several interesting properties of the eigenvalues: λ ∗1 = λ2 and λ1λ2 = 1. From the
earlier stability requirement that

∣∣λ1,2
∣∣ ≤ 1 it follows that s ≤ 1, otherwise the eigenvalues

become real and greater than 1. The stability requirement is then simply

Tr{M} ≤ 2 (3.16)

for any given transition matrix.
To solve for M we can divide the waveform into time regions of constant voltage, solve the

equations of motion in each time section, and take the product of the resultant set of matrices.
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Figure 3.7: Stable regions (shaded) in a 50% duty-cycle square-wave driven linear Paul
trap for different values of aend. As the trap becomes deeper, the smaller the stable
region becomes. For comparison, a sine-wave filter aend = 0 is plotted as a dashed
region.

Solving the equations of motion for a constant S(t), yields the transition matrix [171]

M(τ, f ) =

(
cos
(
τ
√

f
)

sin
(
τ
√

f
)
/
√

f

−√ f sin
(
τ
√

f
)

cos
(
τ
√

f
)

)
(3.17)

where f = a′−2q, and τ is the length of time that the waveform is constant. It is then possible
to build-up any given waveform through the application of M(τ, f ). The two most common
waveforms are sinusoidal and square-wave, however, nearly all RFQ’s in use at RIB facilities
are sinusoidal.

Axially, the ions are confined for any choice of aend, however, while providing axial con-
finement, the axial potential also adds a repulsive radial force. If the axial trap is too deep, the
ions will collide with the RFQ rods and be lost. Figure 3.7 shows the effect of increasing the
axial trap depth with regions inside the curves being stable, while the regions outside being
unstable. In this mode of operation, it is possible to operate the linear Paul trap as a mass filter.
By increasing the trap depth, only species with the correct m/q will be confined, the others
will be lost radially. At TITAN, the RFQ is operated with a trap well of Uend = −1 or −2 V,
corresponding to an aend of ≈ −0.01. The DC offset, ax,y, is kept at zero, while q is typically
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Figure 2.7: Illustration of an EBIT. From left to right: the electron gun as-
sembly, the magnet coils and drift tube assembly, and the collector as-
sembly. Typical trapping potentials are shown. (figure from Ref. [38]
c�Maxime Brodeur. Reproduced with permission).

Figure 2.8: Schematic of the TITAN EBIT. From left to right: the electron gun
assembly, the magnet chamber and drift tube assembly, the injection
optics, and the collector assembly (Credit: Image Courtesy of TITAN).

14

Figure 3.8: Schematic of the ion trap and electron beam in the electron beam ion trap.
The central electrodes create a potential well, confining the ions axially, while the
magnetic field and space charge from the electron beam provides radial confine-
ment.

chosen to be close to 0.6.

3.3.2 Electron beam ion trap
A unique feature of TITAN, in the context of rare isotope science, is the ability to charge breed
radioactive nuclides in an Electron Beam Ion Trap (EBIT) [172], creating what are known as
Highly Charged Ions (HCI). In an EBIT, axial ion confinement is provided by an electrostatic
potential well, while radial confinement is provided by a strong magnetic field and the space
charge of the electron beam. Currently at TITAN, the EBIT typically use electron beam ener-
gies of up to ≈ 5 keV and currents of up to 400 mA. High electron beam energies are required
to reach the highest charge states of heavy nuclides. As an example, the ionization energy of
hydrogen-like U91+ is ≈ 130 keV. The magnetic field compresses the electron beam near the
trap centre, where the field is the strongest, creating a high current density, leading to faster
charge breeding, provided good overlap of the electron beam and the ion cloud. Figure 3.8
shows a schematic drawing of the EBIT.

Charge-bred ions from EBIT are primarily used to increase the precision of mass measure-
ments, as can be seen in equation 3.1. Several mass measurements that have benefited from
the use of HCI’s include: 74Rb [147], the mass of which is important for tests of the CKM ma-
trix, the 71Ge-Ga [146] and 51Cr-V [173] Q-values which are important for neutrino sources
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Figure 3.9: Resolving the 100 keV isomer in 78Rb using ions charge bred to q = 8+,
and an excitation time of 197 ms. An equivalent separation with SCI would need
excitation times of ≈ 1.6 s. Figure from [174].

that are used to calibrate neutrino detectors, and measurements of neutron-rich Rb and Sr iso-
topes [144, 145] that provide important input for astrophysical r-process calculations. HCI’s
can also increase the achievable resolving power R of a Penning trap mass spectrometer, as
the resolving power goes as [148]

R ≈ ωcTRF =
qBTRF

m
. (3.18)

This was demonstrated in 78Rb [174], where the ground state and 100 keV isomer could be
resolved with an excitation time of 197 ms, the separation is clearly seen in figure 3.9. For
Singly Charged Ions (SCI), an equivalent resolving power would have required excitation times
of > 1 s.

3.3.3 Cooler Penning trap
Charge breeding increases the energy spread of the ion beam, which has a detrimental effect on
mass measurements in MPET. To reduce the energy spread a cooler Penning trap (CPET) [175]
has been constructed, and is being commissioned off-line. By using either electrons or protons,
CPET will cool the charge breed beam sympathetically through collisions. A He buffer gas is
not used, because excessive ion losses will result from charge exchange reactions between the
HCI’s and the He gas. Electrons are an ideal candidate because they quickly self cool through
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Fig. 5. Electrode configurations of a Paul (a) and Penning trap (b, c), consisting of two end electrodes and a ring electrode with hyperboloidal (a, b)
or cylindrical shape (c). For charged particle storage a trap voltage with proper polarity is applied between the ring electrode and the end electrodes.

Fig. 6. Left: Radiofrequency quadrupole mass filter electrodes having hyperbolic cross-section. Right: Equipotential lines for a quadrupole field
generated with the electrode structure shown left.

3.2. Radiofrequency quadrupole and Paul traps

Paul and Steinwedel first described the linear radiofrequency quadrupole mass spectrometer (QMS), also named the
radiofrequency quadrupole mass filter (QMF) or ion guide, in 1953 [95,97]. This device provides two-dimensional ion
confinement and mass separation by oscillating electric fields. It was continuously improved and extended to three
dimensions [98,122] in the now-called Paul trap. Both are widely used in various branches of science. The principles
and applications of a quadrupole mass spectrometer are summarized in the textbook by Dawson [20].

An ideal quadrupolar geometry (see Fig. 6) is formed by four hyperbolic electrodes of infinite length with two
perpendicular zero-potential planes that lie between the electrodes and intersect along the center-line z-axis. For mass
analysis both a static electric (dc) potential and an alternating (ac) potential in the rf range are applied to the electrodes
of the linear Paul mass filter which is used, for example, in rest gas analysis or analytical chemistry [123]. The relative

Figure 3.10: Schematic of a Penning trap. Figure reproduced with permission from [41].

synchrotron radiation in a strong 7 T magnetic field, while protons do not. A detriment of using
electrons is that they can be captured by the HCI, causing a loss of the ion of interest; however,
simulations have shown survival rates for U92+ of more than 90% for a cooling time of 500 ms
[176].

CPET is planned to be installed in the TITAN beam line in early 2016.

3.3.4 Measurement Penning trap
The measurement Penning trap (MPET) is the principle trap of TITAN, dedicated to performing
accurate and precise mass measurements. The mass is determined by measuring the cyclotron
frequency ωc = qB/m of an ion in a homogeneous magnetic field. The magnetic field only pro-
vides radial confinement, while axial confinement is provided by a three dimensional electric
quadrupole field. A natural choice for the electric field is a harmonic potential,

V = ax2 +by2 + cz2 (3.19)

where a, b and c are undetermined coefficients. By solving the Laplace equation, we find that
the sum of the coefficients must be zero. The natural choice is to preserve cylindrical symmetry
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Table 3.1: Characteristic trap dimensions for MPET.

Parameter Length (mm)
r0 15
z0 11.785
d0 11.21

by setting a = b, constraining a =−c/2, leading to the potential

V (z,r) =
c
2
(2z2− r2). (3.20)

c is determined by taking the difference between the two equipotentials, as shown in fig-
ure 3.10, where the top and bottom sheets are called the “end-cap” electrodes and the middle
sheet is called the “ring” electrode. This leads to the potential

V0 =V (z0,0)−V (0,r0) = c(2z2
0− r2

0) (3.21)

c =
V0

2d2
0

(3.22)

where r0 is the distance from the trap centre to the closest approach of the ring electrode,
z0 is the distance from the trap centre to the closest approach of the end-cap electrodes, and
d2

0 = (2z2
0+r2

0)/4 is called the characteristic trap distance. These trap measurements for MPET
are summarized in table 3.1. The quadrupole potential is then

V (z,r) =
V0

2d2
0

(
2z2− r2) . (3.23)

3.3.4.1 Ion motion in a Penning trap

In a Penning trap the ions are affected by both the electric field and the magnetic field. A
superconducting solenoid magnet provides a strong and homogeneous magnetic field ~B = B0ẑ

in the trapping volume. The combination of these fields yields the equations of motion [177]

ẍ−ωcẏ− ω2
z

2
x = 0 (3.24)

ÿ+ωcẋ− ω2
z

2
y = 0 (3.25)

z̈+ω
2
z z = 0 (3.26)
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Table 3.2: Eigenfrequencies for 39K+ in MPET.

Motion Frequency
νc 1457822.6 Hz
ν+ 1451683.4 Hz
νz 133508.2 Hz
ν− 6139.2 Hz

where we have defined ω2
z = qV0/md2

0 . To solve for the radial motions, we introduce the
complex coordinate u = x+ iy, transforming the radial equation of motion to

ü+ iωcu− ω2
z

2
u = 0. (3.27)

The radial motion should be periodic, so we try a solution of the form u ∝ exp(−iωt +φ).
This yields two eigenfrequencies

ω± =
1
2

(
ωc±

√
ω2

c −2ω2
z

)
, (3.28)

where ω± are called the reduced cyclotron and magnetron frequencies. For the eigenfrequen-
cies to be real, the condition ωc >

√
2ωz, or in terms of the applied fields qB2

0/m > 4V0/d2
0 ,

must be fulfilled. For typical choices of trapping voltages, this leads to the hierarchy ωc >

ω+ � ωz � ω−. Typical values for the eigenfrequencies of 39K+ in MPET are shown in
table 3.2. The solution to the radial equation of motion is then

x(t) = r+ cos(ω+t +φ+)+ r− cos(ω−t +φ−) (3.29)

y(t) = r+ sin(ω+t +φ+)− r− sin(ω−t +φ−) , (3.30)

where φ± are the initial phases of the ion motion in the reduced cyclotron and magnetron
modes, respectively.

From equation 3.28 the eigenfrequencies can be combined into several useful relationships
[177]:

ωc = ω++ω− (3.31)

ω
2
z = 2ω+ω− (3.32)

ω
2
c = ω

2
++ω

2
z +ω

2
−. (3.33)
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From the above, we see that the cyclotron frequency is not an eigenfrequency of the ion’s mo-
tion, it is instead a combination of the radial eigenfrequencies. By measuring the eigenfrequen-
cies directly, or by measuring a “side-band” frequency, a frequency that is a linear combination
of the eigenfrequencies, the cyclotron frequency can be determined. Two methods for mea-
suring the eigenfrequencies directly are Fourier-Transform Ion Cyclotron Resonance (FT-ICR)
[178] and Phase-Imaging Ion Cyclotron Resonance (PI-ICR) [179]. FT-ICR measures the cur-
rent on a trapping electrode induced by an ion’s motion. This method produces the most precise
mass values; however, it involves ion observation times of several tens of seconds, a problem
for the short-lived nuclides measured with TITAN. Another draw back is detecting the induced
current requires a high-quality LC circuit tuned to the desired eigenfrequency, limiting the abil-
ity to quickly change isotopes, as such a resonant circuit would also have to be changed. In
on-line measurements, several different isotopes are usually measured in a single beam time,
limiting the FT-ICR technique to stable and very long-lived nuclides.

The PI-ICR technique also measures the eigenfrequencies, not by measuring induced cur-
rents, but instead projects the phase of the ion’s motion onto a position-sensitive detector.
This technique has shown great promise in measuring stable isotopes, reaching precisions of
0.2 ppb [180].The PI-ICR technique can in principle reach the same precision as the FT-ICR
technique, provided the same care is taken in preparing the ion, but with the benefit of not
needing a tuned LC circuit.

3.3.4.2 Sideband quadrupole excitation

One way to access the cyclotron frequency is to excite the frequency sideband ωc = ω++ω−,
and measure the amount of conversion from a state of pure magnetron motion to a state of pure
reduced cyclotron motion. An ion is excited with a weak quadrupole field

VRF =
Vq

2a2 cos(ωRFt +φRF)
(
x2− y2) (3.34)

where Vq is the excitation amplitude at a distance a from the trap centre, with frequency ωRF

and phase φRF . This field is applied radially by split electrodes, as schematically shown in
figure 3.11. Usually the excitation voltage is applied on a split ring electrode, but at TITAN
the excitation is applied on the split correction guard electrodes. To produce a quadrupolar
excitation field, adjacent electrodes receive signals that are 180◦ out of phase. By breaking the
cylindrical symmetry of the trapping field with the excitation, the two radial eigenmotions can
be coupled, leading to an interconversion of modes. Similarly, quadrupole excitations can be
applied in the xz or yz planes, allowing the axial and radial motions to be coupled [181].
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quadrupole dipole

�V cos (!rf · t)

V cos (!rf · t)V cos (!rf · t)

�V cos (!rf · t)

Figure 3.31: Schematic of a cross sectional view of a segmented ring elec-
trode which can be used to apply an azimuthal quadrupole or dipole
field on top of the DC trapping potential.

into the setup in 2012. It will be able to separate the ions of interest from isobaric
contaminations in the ISAC beam such as the unwanted 74Ga ions next to 74Rb in
the present work.

3.7.7 TITAN’s MPET setup
The Penning trap structure dedicated to the high precision mass measurements at
TITAN is mounted in the bore of a superconducting magnet. The field strength of
3.7 T is comparable to other Penning trap facilities at radioactive beam facilities
although most of those employ larger field strengths. But the unique feature of HCI

at TITAN can boost the precision according to Equation 3.45 to a level above the
one attainable even with the current strongest magnet field of 9.4 T at the Low-
Energy Beam and Ion Trap facility (LEBIT) [110] at the National Superconducting
Cyclotron Laboratory (NSCL) .
The trap setup as well as neighbouring beam optics for extraction and injection
are shown in Figure 3.32 all of which are mounted on the same support structure.
It is installed in a vacuum tube in the inside of the magnet’s bore. To minimize
magnetic field inhomogeneities, all material used for the trap support structure and
even for the vacuum tube is chosen to be non-magnetic. The main components of
the injection path in Figure 3.32 are a PLT and a Lorentz steerer. The purpose of
the PLT is to remove the majority of the kinetic energy from the ions. It is biased
below the transport energy of the ions. When the ions are in the centre of the PLT

at time tPLT, it is switched to a bias voltage below the Penning trap. The ions can
enter the trap through a hole in the end cap electrode of the trap (see Figure 3.33).

120

Figure 3.11: RF application for quadrupole and dipole excitation. The annular segment
represents the guard electrodes of MPET as shown in figure 3.22, which are seg-
mented into four parts.

The equation of motion can be solved classically [182], however, the solution is much more
readily obtained in the quantum domain [183]. First, we write the Hamiltonian as

H =
1

2m

(
~p−q~A

)2
+qV (z,r) (3.35)

where ~A is the vector potential of the magnetic field, chosen to be ~A = (B/2)(−yx̂+ xŷ) for
convenience. It is possible to write the canonical coordinates as [184, 183]

q+ =−
√

m
ω1

(ẏ+ω−x) p+ =

√
m
ω1

(ẋ−ω−y) (3.36)

q− =

√
m
ω1

(ẏ+ω+x) p− =

√
m
ω1

(ẋ−ω+y) (3.37)

q3 =
√

mωzz p3 =

√
m
ωz

ż (3.38)

which leads to the Hamiltonian

H =
ω+

2
(
q2
++ p2

+

)
− ω−

2
(
q2
−+ p2

−
)
+

ωz

2
(
q2

z + p2
z
)
. (3.39)

This is the Hamiltonian for two normal simple harmonic oscillators, in + and z, and an inverted
oscillator in −. The quantum problem can now be formulated by constructing the annihilation
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and creation operators

a± =
1√
2h̄

(q±+ ip±) , a†
± =

1√
2h̄

(q±− ip±) , (3.40)

which follow the standard commutation relations. The quadrupole excitation field can now be
written in terms of the creation and annihilation operators:

Vr f =
Vq

2a2

(
e−i(ωr f t+φr f )

(
a†2
+ +a2

−+2a†
+a−

)
+ ei(ωr f t+φr f )

(
a2
++a†2

− +2a†
−a+

))
. (3.41)

The first term describes the process of absorbing a photon from the exciting field, and creating
two quanta of reduced cyclotron motion with energy 2h̄ω+. The second term describes the
process of absorbing a photon from the exciting field, and annihilating two quanta of magnetron
motion with energy 2h̄ω−. The third term describes the process of absorbing a photon with
energy h̄ωc and converting a quanta of magnetron motion into a quanta of reduced cyclotron
motion. The last three terms describe the inverse process. Only the interconversion of modes
is of interest, thus we arrive at the Hamiltonian

H(t) = h̄g
(

e−i(ωr f t+φr f )a†
+(t)a−(t)+ ei(ωr f t+φr f )a†

−(t)a+(t)
)

(3.42)

where g = qVq/(2m
√

ω2
c −2ω2

z ) is the coupling constant between the magnetron and reduced
cyclotron modes. Ignoring the axial motion, the complete Hamiltonian for the radial motion
during an excitation is [183]

H(t) = h̄ω+

(
a†
+a++

1
2

)
− h̄ω−

(
a†
−a−+

1
2

)

+ h̄g
(

e−i(ωr f t+φr f )a†
+(t)a−(t)+ ei(ωr f t+φr f )a†

−(t)a+(t)
)
.

Rather than solving the Schrödinger equation for the Hamiltonian above, we find the
amount of conversion from one mode to the other by considering a quantum two-level system
excited by a time-varying potential. We start with the time-dependent Schrödinger equation

ih̄
∂Ψ

∂ t
=
(
Ĥ0 +V̂

)
Ψ (3.43)

where Ĥ0 is the time independent Hamiltonian and V̂ is the sinusoidal excitation. Expanding
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Figure 3.12: Conversion between magnetron (slower) and reduced cyclotron (faster) as
a function the excitation amplitude for an excitation time of 0.1 s. (a) Transition
probability (b) Observed time-of-flight as a function of the RF amplitude. The
blue line is a fit to the data. One full conversion occurs near Vr f ≈ 0.24 V.

Ψ in terms of the unperturbed wave functions Ψ0

Ψ = ∑
k

bkΨ
(0)
k ,

we are lead to the following set of differential equations [185, 186]

ih̄
∂bm

∂ t
= ∑

k
bkVmkeiωmkt (3.44)

where Vmk is the matrix element connecting states m and k, and ωmk = (Em−Ek)/h̄. We now

64



3.3. TITAN

assume a sinusoidal perturbation with frequency ω

V̂ = F̂ cos(ωt) (3.45)

=
F̂
2
(
eiωt + e−iωt) (3.46)

where F̂ is a general operator. Substituting this into equation 3.44 leads to

ih̄
∂bm

∂ t
= ∑

k
bkFmk

(
ei(ωmk+ω)t + ei(ωmk−ω)t

)
. (3.47)

We note that the right hand side of the above is identical in form to equation 3.42. If ω is
close to ωmn, then only these states will contribute to the solution. In the other states, the
frequency terms are large and will be averaged out over the time that V̂ is applied. By making
this “rotating wall” approximation we only need to examine the slowly varying term. This
leads to the two coupled equations

ih̄
∂bm

∂ t
= bnFmneiεt (3.48)

ih̄
∂bn

∂ t
= bmFnme−iεt (3.49)

where ε = ωmn−ω is the frequency detuning. Here we care about converting magnetron
motion into reduced cyclotron motion, so the frequency that will create maximal conversion is
ω+− = (E+−E−)/h̄ = ω++ω− = ωc. Solving these equations leads to

b−(t) = Aeiεt/2
(

cosΩt− iε
2Ω

sinΩt
)
−Beiεt/2 ig

Ω
sinΩt (3.50)

b+(t) =−Ae−iεt/2 ig
Ω

sinΩt +Be−iεt/2
(

cosΩt− iε
2Ω

sinΩt
)

(3.51)

where g = Fmn/h̄, Ω =
√

ε2/4+g2, and A and B are determined from the initial normalization
of the wave function. This solution is much easier to work with when it is expressed as a matrix

(
b−(t)

b+(t)

)
=W (ε, t)M(ε,g, t)

(
b−(0)
b+(0)

)

=

(
eiεt/2 0

0 e−iεt/2

)(
cosΩt + iε

2Ω
sinΩt − ig

Ω
sinΩt

− ig
Ω

sinΩt cosΩt− iε
2Ω

sinΩt

)(
b−(0)
b+(0)

)
(3.52)

where W (ε, t) is the phase evolution of the state vector, and M(ε,g, t) is the propagation matrix.
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Figure 3.13: Quadrupole excitation line shape for g = π/2, 3π/2 for an excitation time
of 1 second.

If we start with a state of pure magnetron motion, then the probability F1(ε,g, t) for an ion to
be converted to a state of pure reduced cyclotron is the (1,2) component of the propagation
matrix [183]

F1(ε,g, t) =
∣∣M1,2(ε,g, t)

∣∣= g2

Ω2 sin2
Ωt. (3.53)

Maximal conversion for ε = 0 occurs when Ωt = gt = (2n+1)π/2 for integer n. Conversely,
minimal conversion occurs with gt = nπ . This is identical in form to Rabbi flopping, meaning
the ion motion will change between magnetron and reduced cyclotron motion as a function of
g or t. This behaviour is demonstrated in figure 3.12, where the excitation amplitude, which
is proportional to g, was varied for the ion 39K+ with a fixed excitation time of 100 ms. Fig-
ure 3.13 demonstrates the probability to be converted from a state of pure magnetron motion
to pure reduced cyclotron motion as a function of the frequency detuning. The conversion line
shape is narrowest when g = π/2, a feature making it the most interesting for experiment.

We must now connect the quantum solution with the classical ion motion. In MPET, an ion
typically has a few electron volts of energy, corresponding to quantum numbers of ≈ 109. By
constructing coherent states of the magnetron and reduced cyclotron oscillators the classical
motions [182] can be recovered [183]. Figure 3.14 shows the radial evolution of an ion subject
to a quadrupole excitation. During the excitation, the radius of the reduced cyclotron motion
slowly grows, while the radius of the magnetron motion slowly decreases.
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Figure 3.14: Ion motion under a quadrupolar excitation. (a) t ∈ [0,τ/2], (b) t ∈ [τ/2,τ],
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Figure 3.16: Ramsey excitation line shape (black), compared with a quadrupole exci-
tation (red). The Ramsey line shape uses an excitation scheme t1 − t0 − t2 of
0.1−0.8−0.1 s, while the quadrupole excitation uses an excitation time of 1 s.

3.3.4.3 Ramsey excitation

Instead of applying the excitation field in one pulse, the excitation can be applied at two differ-
ent times, allowing for a phase to accumulate between the RF-field and the ion motion. This
time-separated oscillatory field technique [187, 183, 188] was first pioneered by Ramsey for
molecular beams, for which he received the Nobel prize, and as such are called “Ramsey” ex-
citations. The Ramsey method leads to an interference-type line shape, narrowing the central
lobe, thereby increasing the precision of the measurement. The line shape can be found by suc-
cessive applications of M(ε,g, t), being careful to track the phase difference between the RF
and ion motion. The excitation is split into two pulses, one of length t1, and the other of length
t2, separated by a waiting period of length t0. For full conversion g(t1 + t2) = π/2, which is
the same condition for single pulse quadrupole excitation length of t1 + t2. Figure 3.15 shows
the difference in the time structure between a single pulse and a Ramsey pulse. An impor-
tant part of the Ramsey excitation is that the phase between the first and second RF pulses be
phase coherent; otherwise, the maximum conversion will be shifted in frequency [183, 189].
At TITAN, phase coherence is accomplished by using an RF switch to turn on and off the RF
that is applied to the trap, while keeping the RF function generator continually running. The
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transition probability is

F2(ε,g, t2, t0, t1) = |M(ε,g, t2)M(ε,0, t0)M(ε,g, t1)|21,2 (3.54)

F2(ε,g, t2, t0, t1) =
g2

Ω2

(
sin2

(
εt0
2

)
sin2 (Ω(t1− t2))

+
(

cos
(

εt0
2

)
sin(Ω(t1 + t2))+

ε

2Ω
sin
(

εt0
2

)

(cos(Ω(t1 + t2))− cos(Ω(t1− t2)))
)2
)
, (3.55)

which is found through successive applications of the propagation matrix M(ε,g, t). The line
shape is narrowest when t1 = t2, reducing to

F2(ε,g, t2, t0, t1) =
g2

Ω2

(
cos
(

εt0
2

)
sin(2Ωt)+

ε

2Ω
sin
(

εt0
2

)
(cos(2Ωt)−1)

)2
. (3.56)

If t0 = 0, the normal line shape (equation 3.53) is recovered. A Ramsey conversion line shape
is plotted in figure 3.16. The Ramsey technique increases the overall precision by a factor
of 2-3, depending on the choice of excitation and waiting times, allowing for more precise
measurements, or for the same precision as with the one pulse excitations but in a shorter
amount of time.

3.3.4.4 Dipole cleaning

Contaminant ions may be delivered simultaneously with the ion of interest. These contami-
nants can potentially shift the measured cyclotron frequency in the trap through their mutual
interactions [190, 191]. By applying a dipole field to the trap at one of the eigenfrequencies it is
possible to remove unwanted ions from the trapping region [181]. The dipole field is created by
applying 180◦ out of phase signals to opposite electrodes, as shown in figure 3.11. The growth
of the eigenmotion depends on the relative phase difference between the RF excitation and the
ion motion, but given a large enough excitation amplitude, and a long enough excitation pulse,
the motion will grow linearly [192] until the ion is lost on the trap electrodes, either radially
in the case of radial excitations, or ejected from the trap by axial excitations. At TITAN, the
reduced cyclotron motion of unwanted ions is excited, causing the ions orbit to increase in
radius. The magnetron motion could also be excited; however, the magnetron motion is nearly
constant with mass, limiting the resolving power.
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3.3.4.5 Time-of-flight ion cyclotron resonance

In order to measure the conversion line shape, the Time-of-Flight Ion Cyclotron Resonance
(TOF-ICR) technique [182] is used at TITAN. By converting the magnetron motion to reduced
cyclotron motion, a large gain in radial energy occurs (because ω+ >> ω−), and this gain in
energy can be measured in the TOF of an ion from the trap to a detector. The ion acts as a
current-carrying loop, having a magnetic dipole moment depending on the radial energy of the
ion µ(ω) = E(ω)/B0, where ω is the frequency of the applied excitation. Extracting an ion
through a magnetic field gradient creates a force on the magnetic dipole, changing the radial
energy into axial energy, and causing the time-of-flight to the detector to change depending on
the radial energy of the ion in the trap. If the electric and magnetic fields are known along the
flight path to the detector, the TOF can be calculated as

T =
∫ z1

z0

(
m

2(E0−qV (z)−µ(ω)B(z))

)1/2

dz (3.57)

where E0 is the initial total energy of the ion, V (z) and B(z) are the electric potential and
magnetic field strength along the z-axis from the trap at z0 to the detector at z1. The radial
energy of the ion after an excitation is dominated by the kinetic energy of the reduced cyclotron
motion

E(ω)≈ 1
2

mω
2
+F1(ωc−ω,g, t)ρ2

−(0) (3.58)

where ρ−(0) is the initial radius of the magnetron motion. The cyclotron frequency is the found
by scanning the excitation frequency ωr f and finding the minimum in the TOF distribution, as
seen in figure 3.17 for 23Na+.

3.3.4.6 Measuring the axial frequency of the Penning trap

Using TOF-ICR methods it is possible to directly determine the reduced cyclotron frequency
ω+, and to infer the magnetron frequency using the relationship ω−=ωc−ω+. These methods
are not directly applicable to determining the axial frequency, since there is no convenient way
to couple the axial and radial modes. Moreover, if one could couple the axial and radial modes,
the resonance would be “washed out” due to the axial motion of the ion in the trap. Instead,
we can measure the phase evolution of the ions by varying the trapping time. By intentionally
closing the trap at the incorrect time, we can create ions which have sizeable axial oscillations.
Usually, the correct time to close the trap is the time when they are near the trap centre, such
that they have the minimum possible axial energy. As the switch timings are well controlled,
we can start the ions on the same axial phase on each injection cycle. The TOF to the detector
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Figure 3.17: TOF-ICR resonance of 23Na+ for an excitation time of 97 ms. The blue line
is a fit of the theoretical line shape [182].

z
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Figure 3.18: Ion trajectories when being ejected. The ion on the left is already travelling
to the right, so no additional turn-around time is required. The ion on the right is
travelling to the left, and must turn-around before leaving the trap.

71



3.3. TITAN

is then

T =
∫ z1

z0

(
m

2(E0−qU(z))

)1/2

. (3.59)

There is the added complication that the TOF depends on the axial phase of the motion – the
velocity vector of the ion matters. This is because the ion can be moving away from the exit
when the trap is opened. To calculate the correct TOF, we must account for the “turn-around”
time of the ion bunch. Because the potential in the z-direction is harmonic, we know the
velocity of the ion at the moment the trap is opened,

E =
1
2

mA2
ω

2
z cos2(ωzt +φ0) (3.60)

where A is the amplitude of the axial oscillation, and φ0 is the initial phase of the ion. To
simplify calculating the turn-around time, we assume that the trap electrodes switch instan-
taneously, preserving the ion’s kinetic energy and spatial position, changing only the poten-
tial energy. The position where the ion turns around is found by solving U(z) = E, with the
turn-around time being twice the length of time for the ion to go from the starting position
Acos(ωzt + φ0) to the turn-around position. A drawing of extracting an ion from the trap is
shown in figure 3.18. In the figure two ions are shown: an ion on the right of the trap moving
towards the left, and an ion on the left of the trap moving to the right. For the ion moving left, it
continues travelling to the left until it turns around and can exit the trap, while the ion moving
to the right can immediately leave the trap. The rest of the TOF to the detector is calculated
as normal. A measurement of the axial frequency is shown in figure 3.19. Each data point is
the average of 205 injection-ejection cycles, with the total trapping time varied between 1 and
100 ms. The “kink” in the TOF, at ≈ 2 µs, occurs just before the ions turn around and begin
travelling towards the exit. The longest TOF occurs just after turning around, when the ions
are heading away from the detector, while the fastest time of flight occurs when the ions are
near the centre of the trap, and are travelling towards the detector. This is expected, as the ions
on the exit side of the trap have their potential energy reduced when the trap is opened. Ions on
the entrance side of the trap have more potential energy, leading to slightly higher velocities,
and a shorter TOF. For 39K+, the axial frequency was measured to be 133508.24(18)Hz, with
a fitted oscillation amplitude of 1.8(1) mm.

This technique can also be used to minimize the axial oscillation amplitude of the ion
bunch. Because of higher order components in the trapping potential, the axial and radial
modes in a Penning trap can couple, leading to a potential shift in the measured cyclotron fre-
quency. By carefully eliminating axial oscillations, any frequency shifts related to the axial
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Figure 3.19: Axial frequency measurement of 39K by evolving the axial phase of the ion
bunch. The evolution times are (a) 0.001−0.015 ms, (b) 50.001−50.015 ms, (c)
100.001−100.015 ms. The axial frequency was found to be 133508.24(18)Hz.

motion can be eliminated. Further, large axial oscillations can “wash-out” the measured reso-
nance, affecting the achievable statistical precision of the measurement. By varying both the
time when the trap closes and the incoming energy of the ion bunch, it is possible to eliminate
nearly all axial oscillations [155].

3.3.5 Technical setup
The field strength of the superconducting magnet is 3.7 T, which is nearly half of the average
field strength of other on-line Penning trap spectrometers, most having field strengths ranging
between 6–9.4 T [149, 193, 194]. To compensate for the low magnetic field strength, highly
charged ions can be used.

To prepare the initial magnetron motion, a Lorentz Steerer (LS) is used [195]. This is
different from the usual method of dipole excitation at the magnetron frequency. Not only is
this dipole excitation time consuming, requiring excitation times of > 10 ms, but the RF phase
of the magnetron pulse must be locked to the ion capture time [196]. Long excitation times are
needed because the magnetron frequency is very low and the driving voltage is limited by the
RF amplifier. The RF phase must be locked because ions cannot be injected with zero initial
magnetron motion and the magnetron radius after excitation depends on the phase difference
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Figure 3.20: Lorentz Steerer schematic, with equipotentials [195] (black), and E-field
direction lines (blue). Near the centre of the Lorentz steerer, the electric field is
almost entirely along the y-axis. The top electrode is at 1 V, the bottom electrode
is at −1 V, and the side electrodes are at 0 V.

between the magnetron motion and RF pulse. The LS is located near the trap, and it is wholly
contained in the strong magnetic field of the superconducting solenoid. The LS eliminates
this preparation stage by starting the ion on an initial magnetron motion during injection, a
development allowing access to nuclides with half-lives below 50 ms. Among others, the LS
has allowed TITAN to measure the mass of 11Li [67], having a half-life of only 8.8 ms, which
is the shortest lived nuclide measured in a Penning trap. When an ion passes through the LS it
experiences an ~E×~B field, causing the ion to drift off axis. Figure 3.20 illustrates the electric
potential and field direction for an ion inside the LS. Typically the LS voltages are set such
that the ions are injected into MPET with magnetron radii of ≈ 1 mm. This is much smaller
than the 7.6 mm inner radius of the LS, meaning the electric field the ion experiences is nearly
unidirectional. The LS can also correct for off axis injection caused by ion optics upstream of
the trap. By manipulating the voltages on the four electrodes the ion’s initial position can be
accurately set. For example, the phase of the magnetron motion can be controlled to within a
few degrees [195].

After passing through the LS, the ions must be pulsed down in energy to be captured in the
trap, as the transport energy of the ions is typically ≈ 2 keV, while the trap is held at ground
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Figure 3.21: Schematic of an ion’s energy during injection into MPET. The pulsed drift
tube (PLT) is pulsed down when ions are passing through, removing nearly all
of the transport energy. The ions then climb into the trap, and are captured by
changing the potential on the trap end-cap.

potential. A schematic of this is shown in figure 3.21. A long pulsed drift-tube (PLT) acts as
an ion energy elevator, removing enough kinetic energy so that the ion when trapped has, at
most, a few electron volts of energy. This is an important step, as excess axial energy may
“wash-out” the resonance due to an increase in the TOF spread of the extracted ion beam.
Optimal injection parameters are found by scanning both the capture time and the lower level
of the PLT. A general procedure for optimizing injection is discussed in [155]. However, if one
wishes to measure the axial frequency, a slight change of the capture time from the optimal
setting induces axial oscillations. Once optimal settings are found, the timings for nuclides
near-by in mass can be calculated by a simple scaling of the timings with the mass-to-charge
ratio. This is particularly useful when the nuclide of interest is produced at very low rates, as
too much time would be needed to optimize the injection.

For the electrode configurations, MPET uses hyperboloids of revolution for the end cap
and ring electrodes of the trap. To correct for higher order terms arising both from truncating
these electrodes and from holes to allow for injection and ejection, so-called guard electrodes
correct for the electrode truncation while correction tubes correct for the holes in the end caps.
The characteristic distances are r0 = 15 mm, z0 = 11.785 mm, and d0 = 11.21 mm. Figure 3.22
shows a schematic of the real trap electrodes. Between the ring and end caps a potential differ-
ence of 35.75 V is used, with the end caps set to 20 V and the ring set to−15.75 V. Determining
the correct settings for the correction electrodes is a time consuming process, however, to find
the correct settings one can follow the method presented in [198, 155]. Following this proce-
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MCP

MCP

to EBIT

Off-line ion source

FIG. 1. (Color online) The TITAN experimental setup that
includes a RFQ, a high-precision Penning trap, an EBIT, an off-line
ion source, and MCPs for beam diagnostics.

A. The off-line ion source and radiofrequency quadrupole

A surface ionization source is located below the RFQ, as
shown in Fig. 1. This ion source produces both 6Li and 7Li
as well as smaller quantities of the alkali metals 23Na, 39K,
41K, 85Rb, and 87Rb. The ion source is biased at the same
electrostatic potential as the RFQ, which is 5 to 40 kV above
the beam line ground potential. The ions are extracted from
the source and then accelerated and focused toward the RFQ.

The purpose of the RFQ is to accumulate, cool, and bunch
the continuous beam coming from either the TITAN off-line
ion source or ISAC. It is similar to other RFQ’s at radioactive
beam facilities as described, for example, in Refs. [21] and
[22].

B. The mass measurement Penning trap

Penning traps [23] are devices used to perform high-
precision mass measurements on stable and exotic nuclei
(see review [24]). TITAN’s Penning trap is located inside
the bore of the superconducting magnet, shown in Fig. 1.
Prior to injection into the trap, the ions are moved off-axis
using a Lorentz steerer [25], similar to the one currently used
at the LEBIT facility [26]. The Lorentz steerer reduces the
preparation time in the Penning trap by inducing an initial
radial displacement of the ion bunch prior to its capture, as
opposed to using RF fields inside the trap, which is typically
the case for on-line Penning trap experiments [27].

Figure 2 shows a model of the hyperbolical electrodes of the
TITAN’s high-precision Penning trap. It is composed of two
hyperboloids of revolution forming one ring [label (1) in Fig. 2]
and two end cap electrodes (2). The ions are axially trapped
by a harmonic quadrupole electrostatic potential produced by
a potential difference !Udc = 36 V between the ring and the

B

Out to MCP
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Corr. tube el.

End cap el.

Ring el.

Corr. guard el.

VRF

Ions in from 
RFQ or EBIT

FIG. 2. (Color online) Illustration of the TITAN Penning trap
formed from the hyperbolic ring (1) and end cap electrodes (2) that
produces the harmonic potential, tube (3), and guard (4) correction
electrodes that produce the harmonic potential. The RF is applied
on (4).

end cap electrodes, as shown in Fig. 2. Some anharmonicities
in the trapping potential are introduced by the holes in the
end cap electrodes and by the finite size of the hyperbolic
electrodes. Two sets of correction electrodes [labeled (3) and
(4) in Fig. 2], are used to compensate for higher-order electric
field components. The radial confinement is provided by a
homogenous 3.7-T magnetic field produced by a persistent,
actively shielded superconducting magnet. The linear decay
of the magnetic field due to flux creep [28] depends on the
pressure in the liquid helium vessel and during the 6Li-7Li
measurement it was measured to be (1/B) × (δB/δt) <
0.25 ppb/h.

The ion motion in a Penning trap is well understood [23,29]
and is composed of three different eigenmotions: an axial mo-
tion with frequency νz and two radial motions with frequencies
ν±. In an ideal trap, the sum of the frequencies of the two radial
motions is equal to the true cyclotron frequency of the ion
[30]:

ν+ + ν− = νc = 1
2π

q × B

mion
, (1)

where q/mion is the charge-to-mass ratio of the trapped ion
and B is the magnetic field at the trap center. The two radial
motions can be coupled by applying an azimuthal quadrupolar
RF signal on the sliced correction electrode [(4) in of the trap
Fig. 2]. The cyclotron frequency is determined using the time-
of-flight (TOF) resonance detection technique [29,31,32].

For a proper choice of the RF amplitude VRF, at a given RF
excitation time TRF, and when νRF = νc a full conversion of
the initial magnetron motion into reduced cyclotron motion
will occurs. This leads to an increase in the kinetic energy
of the trapped ions. After the excitation has been applied, the
ions are released from the trap and their TOF is recorded on an
MCP located outside of the high magnetic field region. Due to
their larger kinetic energy gained during their excitation phase
the TOF of the ions with νRF = νc will be shorter. A cyclotron
resonance curve is obtained by scanning the RF frequency in

044318-2

1 CAD$
coin 

Figure 3.33: Schematics and picture of TITAN’s MPET electrodes. The Cana-
dian dollar coin (with a diameter of 26.5 mm) is given for scale (bot-
tom). Figures from [146].

PLT before it is pulsed down. In this configuration the ions lose most of their kinetic
energy before entering the Lorentz steerer (see Figure 3.32). The Lorentz steerer
is composed of a segmented, cylindrical tube which creates a dipole field when bi-
ased following Figure 3.34. The radial displacement is proportional to the Lorentz
steering strength �VLS and the time it takes the ions to pass through the Lorentz
steerer (Equation 3.55). The latter time depends on m/Q since every ion species is
accelerated by the same electric potential difference after the thermalization in the
RFQ or the EBIT. Since, t /

p
m/Q ion species with smaller m/Q ratios need a

stronger Lorentz steering strength �VLS to be positioned to the same initial mag-
netron radius. Since for a full conversion the initial magnetron radius and the final
cyclotron motion are identical in size (see Equation 3.25) a larger ⇢0 will result in
a larger gain in energy during the RF-excitation in the MPET. The maximal ⇢0 is

122

Figure 3.22: Schematic of MPET’s trap electrodes. The guard electrodes are coloured to
match the colour scheme in figure 3.11. The grey circles are sapphire balls that
are used to electrically separate the trap electrodes. Figure from [197].

dure, the guard electrodes are set to 0.189 V, while the correction tubes are set to 28.17 V. This
procedure only needs to be completed once, as all parameters, including the trap geometry, are
kept constant.

After trapping and excitation, the ion is ejected from the trap towards a detector with single-
ion sensitivity. MPET uses two detectors, a Micro-Channel Plate (MCP) mounted in-line with
the trap and a Daly detector [199] mounted perpendicular to the optical axis [197]. MCP’s are
≈ 40% efficient when detecting singly charged ions, while a Daly detector can have efficiencies
of > 90%. When an ion impinges on an MCP, it releases electrons from low work function
material in one channel of the MCP. These released electrons start a cascade, amplifying the
initial signal up to 106 times. If an ion hits in between channels, the probability for a cascade,
and detection, is reduced. A Daly detector first impinges the ion beam on a material with
a low work function, releasing several electrons for each incoming ion. At TITAN, a plate
of naturally anodized aluminium is used, releasing ≈ 3 electrons for incident ion energies of
5 keV [200]. These released electrons are then accelerated towards another MCP where they
are detected. Increasing the initial number of charged particles increases the likelihood that at
least one will be detected, leading to a large overall increase in the detection efficiency. The
Daly detector was used during the 20,21Mg experiment, and was found to be two-fold more
efficient than the on-axis MCP.
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3.3.6 Determining the mass
Once an ion’s cyclotron frequency has been measured, the mass can be determined provided
the magnetic field is well known. This is not possible because the field strength is not constant.
It varies with pressure and temperature, and it is slowly decaying due to residual resistance in
the superconducting coils. By taking the frequency ratio between two different species these
fluctuations can be largely eliminated. In the following, we call one ion the “ion of interest”
and the other the “calibrant” or “reference” ion. The frequency ratio R is defined to be

R =
νc,ref

νc
=

qref

q
m

mref
. (3.61)

where m is the mass of the ion. To obtain the atomic mass, we must correct for the missing
electrons and their binding energy

M =
q

qref
R
(
Mref−qrefme +Be,ref

)
+qme−Be (3.62)

where M is the atomic mass of the species, me is the mass of the electron, and Be is the total
binding energy of the missing electrons. The electron binding energies for singly charged
ions are usually quite small, having values between ≈ 5− 10 eV. In most measurements the
statistical uncertainty (≥ 100 eV) dominates, so the binding energy can be ignored. Quite
often, atomic masses are reported in short-hand notation as mass excesses ME = M−A · u,
where u is the atomic mass unit, defined such that the mass of 12C is exactly 12 u. The mass
excess removes the bulk of the mass that comes from the constituent protons and neutrons,
enabling a clearer picture of the differences in binding energy between isobaric nuclides.

While the simple frequency ratio above can largely calibrate the magnetic field, there re-
mains the issue that the two measurements are not performed at the same time. This can be
corrected for by performing two reference measurements, one before and one after the mea-
surement of the ion of interest. The reference frequency can be linearly interpolated to the time
of the measurement of the ion of interest, removing magnetic field instabilities that are linear in
time. Not only does the frequency ratio eliminate magnetic field fluctuations, it also eliminates
many other systematic effects.

3.3.7 Systematic shifts
Due to many differing effects, the measured cyclotron frequency may be shifted from the true
cyclotron frequency. Here we will examine these potential shifts, and assign upper limits on
their size. In nearly all cases we will find that the systematic effects are much smaller than
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the desired measurement precision. We parametrize the shift in the frequency ratio ∆R/R by
calculating the difference between the measured ratio and the ideal ratio

∆R
R

=
Rmeasured−Rideal

Rideal
. (3.63)

One can see that systematic shift will cancel to high order through this procedure. Assume that
the ion of interest and the reference ions have different systematic shifts δνc and δνc,ref. The
measured frequency ratio would be

Rmeasured =
νc,ref +δνc,ref

νc +δνc
=

νc,ref

νc
· 1+δνc,ref/νc,ref

1+δνc/νc
≈ Rideal

(
1+

δνc,ref

νc,ref
− δνc

νc

)
(3.64)

If both ions have the same m/q, then the systematic shifts will be close in size, causing the
systematics to largely cancel. Thus, we can expect the systematic shifts to be small. To simplify
calculations, the shifts are expressed in terms of ∆(m/q), where m is expressed in atomic mass
units, and q is the charge state, or number of removed electrons. Suitable references can always
be found, so ∆(m/q) of 2 or 3 is typical, however, the difference can be as large as 10 or more.

3.3.7.1 Relativistic effect

An ion’s velocity in the reduced cyclotron mode is v+ = ω+ρ+, a value depending on the
magnetic field strength and radius of the motion. For example in MPET, for a 39K+ ion on a
1 mm orbit, the velocity is v/c ≈ 3 · 10−5, resulting in a relativistic correction factor γ − 1 of
4.6 ·10−10. The relativistic cyclotron frequency is given by

ωc =
qB
γm

, (3.65)

resulting in a measured frequency shift upwards of 0.4 ppb. For heavy SCI, like 39K+, the
relativistic effect is evidently quite small, and can be neglected. For light SCI or HCI, the
relativistic shift can be quite large (several ppb), and must must be corrected for [201].

In the measurements presented here, the relativistic shift can be neglected because the pre-
cision of all measurements were > 80 ppb.

3.3.7.2 Spatial magnetic field inhomogeneities

Care was taken during the construction of the magnet to ensure the magnetic field was homo-
geneous in the trapping region, but some inhomogeneities still exist due to the finite size of the
solenoid, and by inhomogeneities caused by the material used to construct the trap, vacuum
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vessel, etc. The frequency shift is given by [202]

∆νc = β2

((
z2−ρ

2
+

)
− ν−

νc

(
ρ

2
++ρ

2
−
))

(3.66)

where β2 is the quadrupole coefficient of the magnetic field inhomogeneity, and z is the am-
plitude of the axial motion. For TITAN the upper limit on the shift in the frequency ratio
is [198]

∆R
R

< 4.3 ·10−10
∆(m/q). (3.67)

3.3.7.3 Non-harmonic imperfections of the trapping potential

The electric potential of the trap is not a pure quadrupole field, because higher order terms
arise both from truncating the trap electrode surfaces, and from the holes in the end caps for
injecting and ejecting ions. These higher order terms are corrected for by adding electrodes
to compensate these finite size effects. “Guard” electrodes are added between the end cap and
ring electrodes to correct for the electrode truncation, while “tube” electrodes are added near
the end caps to correct for the injection and ejection holes. These electrodes are shown in
figure 3.22. A general procedure to minimize these non-harmonic potentials was developed in
[155] to determine the optimal trap settings. The frequency shift is less than

∆R
R

< 3.6 ·10−10
∆(m/q). (3.68)

3.3.7.4 Harmonic distortion and magnetic field misalignment

Precision machining and setting of the trap electrodes is a difficult procedure. Any distortion
of the ring electrode from cylindrical symmetry can lead to a frequency shift. This distortion is
parametrized by an ellipticity factor η . Further, the trap axis may be at an angle θ with respect
to the magnetic field axis. Both of these misalignments lead to a frequency shift of [203]

∆νc =

(
9
4

θ
2− 1

2
η

2
)

ν−. (3.69)

The shift in the frequency ratio is then given by [203]

∆R
R

=

(
9
4

θ
2− 1

2
η

2
)(

∆A
Aref

)(
ν−

ν+,ref

)
(3.70)
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where A is the mass number. The shift can be estimated by considering what the maximum
machining tolerances in the components holding the trap together are. The largest potential
shift arises from the maximal tolerances in the sapphire balls that separate the trap electrodes
(see figure 3.22). The maximum angle is then estimated to be θ ≈ 4.2 · 10−3 rad [198]. The
shift could be of the order

∆R
R

< 4.3 ·10−9
∆(m/q). (3.71)

This is certainly a very conservative estimate, since it is unlikely that sapphire balls with
opposite tolerances would be placed to give the maximal deviation. The alignment and dis-
tortion parameters can be measured through a specific combination of the eigenfrequencies
[203] (

9
4

θ
2− 1

2
η

2
)
≈ 2ω−ω+

ω2
z
−1. (3.72)

Using the measured eigenfrequencies in table 3.2, and using a conservative error of 0.2 Hz for
the magnetron frequency, the frequency ratio shift becomes

∆R
R

=−0.6(17) ·10−9
∆(m/q). (3.73)

Again, shifts on the order of 1 ppb are much smaller than the precision usually measured in an
on-line experiment.

3.3.7.5 Ion-ion interactions

Ideally only a single ion would be trapped at a time, but quite often multiple ions, either of
the same species or of a contaminant species, will be trapped simultaneously. These additional
charges not only modify the potential inside the trap, but they also interact with each other
through their mutual Coulomb interactions. Through these interactions, the observed eigen-
frequencies may be shifted, leading to a systematic shift in the measured cyclotron frequency.
These shifts have been observed, and they vary linearly with the number density, assuming
the same charge state [190]. Other shifts arise due to the simultaneous trapping of different
species [191].

To correct for these shifts, one can determine the cyclotron frequency as a function of the
number of detected ions and extrapolating to the detector efficiency, correcting for both the
ion-ion interaction and the efficiency of the detector. Such an analysis is called a “count-
class” analysis [204], and it can be applied when a total of greater than ≈ 1000 ions have
been collected in a resonance spectrum. Trap extractions are divided into classes based on the
number of ions detected. A typical count-class analysis for 23Na with 4 count-classes is shown
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Figure 3.23: Count class analysis for 23Na with four count classes. The dashed lines are
the ±1σ line fits, while the filled area show the error band when the count class
is extrapolated to the detector efficiency. A typical detector efficiency of 0.6 was
used.

in figure 3.23. The classes are divided in such a way that each combined class has as close to
an equal number of ions as possible. In figure 3.23, the first, second, and third classes contain
extraction events where 1, 2, or 3 ions were detected, while the fourth class contains all events
with 4 or more detected ions. The position of the class on the x-axis is taken to be the centre
of gravity of the class. In the fourth class of figure 3.23, it is close to 4 because most events in
that class have 4 detected ions. A linear fit is done to the count-class data, and is extrapolated
to the detector efficiency. In this way the cyclotron frequency when one ion is in the trap can
be extracted. In figure 3.23, the solid blue line is a linear fit to the count-class data, while the
dotted blue lines show the±1σ error bands. In cases where statistics are too low, the difference
between the analysis with only one detected ion to that of an analysis with all detected ions can
be used. The difference is taken to be the systematic error.

In the present measurements, a count-class analysis is done for each measured isotope.

3.3.7.6 Non-linear magnetic field fluctuations

As mentioned at the beginning of this section, the cyclotron frequency of both the ion of interest
and the calibrant ion are measured. However with TITAN, it is not possible to measure the
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frequency of both ions simultaneously. In the time between measurements, the magnetic field
may decay, or otherwise fluctuate, in a non-linear manner, the result of which would be a
systematic shift of the measured mass. In order to minimize these potential shifts, the time
between reference measurements is usually kept below one hour. The effect of changing the
time between the reference measurements was determined to be δv/v = 0.04(11)ppb/h [201].
This is below the sensitivity of the present measurements, and is not included in the analysis
herein.
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Results and discussion

In this chapter we discuss the results of the mass measurements of 51,52Ca, 51K, and 20,21Mg.
The Ca and K mass values, along with the recent measurements by ISOLTRAP [59], will be
compared to existing phenomenological interactions and interactions based on χEFT, with the
aim of elucidating the ground state structure near the N = 34 shell closure. The Mg mass values
will be used to test the IMME in the A = 20 and 21 isotopic chains. This will be compared
to the IMME calculated with the USDA/B interactions, and χEFT based calculations. The
χEFT calculations are particularly interesting, as they are the first χEFT based calculations to
included both active neutrons and protons in the valence space.

The measurements were completed in three separate experiments. First, beams of 51,52Ca
were produced by bombarding a Ta target with 75 µA of 480 MeV protons, and ionized with
TRILIS. Second, the 51K beam was made with a UCx target with 1.4 µA of protons, with a
surface ion source. Third, beams of 20,21Mg were produced by bombarding a SiC target with
40 µA of protons, and were ionized using IG-LIS. Yields are presented in table 4.1.

Table 4.1: Ion yields [205] for 51,52Ca, 51K and 20,21Mg.

Species T1/2 Yield (ions/s)
51Ca 10.0 s 1.4 ·104

52Ca 4.6 s 1.3 ·103

51K 365 ms ≈ 75
20Mg 90.8 ms 50
21Mg 122 ms 2.7 ·103
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4.1 Existing data

4.1.1 51Ca
Creating beams of neutron rich Ca isotopes has been a challenge for rare-beam facilities. Be-
cause of this, mass measurements in this region have generally relied on multi-nucleon trans-
fer reactions. The mass of 51Ca, as of the Atomic Mass Evaluation 2003 (AME03) [206],
is derived from three-neutron-transfer reactions, using beams of 14C or 18O on a 48Ca target
[207, 208, 209, 210]. Additionally, two TOF mass measurements of 51Ca agree with each other
[211, 212], but disagree at the ≈ 1σ level with the reaction based experiments. A more recent
measurement at GSI using the fragment separator and experimental storage ring (FRS-ESR)
[213], agrees with the TOF measurements, but is in strong disagreement with the reaction
values. Figure 4.1 summarizes these results, with the TITAN value for comparison.

First, we will examine the reaction based measurements. Three-nucleon transfer reactions
are quite complicated, due to the possibility of multiple steps during the transfer, leading to low
cross-sections, and resulting in low statistics. Further, due to the possibility of contaminants
in the target material, it is possible that observed states in the outgoing reaction channel may
be misidentified. As all four reaction experiments used enriched 48Ca targets, the residual
40Ca contamination resulted in large backgrounds. Other target contaminants include 16O and
14C. In reactions on these contaminants, the outgoing projectile-like particle (15O or 11C)
have energies that are close to the ground state energy of the reaction on 48Ca, however, the
spectrometers used in these reactions were capable of separating these reactions. Because
of this, it is unlikely that a peak was misidentified. Another potential source of error in these
reactions is false calibration of the reaction spectrometer. In order to calibrate the spectrometer,
reactions on well known targets are performed. This further eliminates the possibility that a
contaminant reaction peak was identified as belonging to the reaction of interest.

Beyond the general disagreement of the reaction experiments on the ground state mass of
51Ca, none of the experiments agree on the energies of the excited states. Two recent measure-
ments also corroborate the conclusion that these early multi-nucleon transfer reactions iden-
tified the wrong state as the ground state. One measurement used deep inelastic collisions of
238U on a target of 48Ca [214], while the other used the β -decay of 51K and the β −n decay of
52K [215]. These measurements agree with each other, but disagree with the values extracted
from the above reaction-based experiments. For example, in [210] the lowest excited state was
found to be 1.01(11)MeV, while in the two recent measurements the lowest excited state was
found to be 1.72 MeV. Further, the energy levels from the recent experiments agree well with
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Figure 4.1: All 51Ca mass measurements, as compared to the TITAN value. Only two
reaction based measurements agree with each other, while the other two are in great
disagreement. The TOF measurements agree with each other, and are in slight
disagreement with the reaction measurements. The red band shows the AME03 [85]
value. The TITAN value is shown for comparison.

calculations done with both KB3G and GXPF1A.

4.1.2 52Ca
In the case of 52Ca, only two prior mass measurements exist and are included in the Atomic
Mass Evaluation 2003 [206]. The first measurement comes from a β -end point measure-
ment [216], while the second comes from a TOF measurement [211]. The measurements
strongly disagree with each other. The mass excess from the β -decay measurement is
−35.75(32)MeV, while the TOF measurement is−32.5(5)MeV. In the AME2003, the evalua-
tors chose to disregard the β -end point measurement, taking the value of the TOF measurement,
and slightly inflating the error bar. The end-point measurement also determined the Q-value of
the 52Sc→52 Ti, allowing for a determination of the mass excess of 52Ca. However, if any of
the intermediate measurements were wrong, the value for 52Ca would suffer large systematic
shifts. Figure 4.2 shows the previous measurements together with our TITAN value.
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Figure 4.2: All 52Ca mass measurements. All measurements disagree. The red band
shows the AME03 [85] value.

4.1.3 53,54Ca
The masses of 53,54Ca were measured for the first time using the multi-reflection time-of-flight
device at ISOLTRAP [59]. ISOLTRAP is a multi-trap experiment at the ISOLDE/CERN facil-
ity, which employs a Penning trap and a recently added MR-TOF system for isobar separation
and mass measurement. The measured mass excesses are −229387.8(43.3) keV for 53Ca and
−225161.0(48.6) keV for 54Ca. ISOLTRAP also measured the masses of 51,52Ca in a Penning
trap and the mass of 52Ca with the multi-reflection device. In each case, the masses agree well
with the values measured with TITAN. This lends credence to the accuracy of the mass values
for 53,54Ca.

4.1.4 51K
The mass of 51K has not been measured prior to the present measurements. The mass value
tabulated in the AME03 is based on observed trends in the mass surface [206]. In general,
the mass surface varies slowly and regularly as a function of N and Z. Rapid changes in this
regularity signals changes in structure, structure such as new sub-shell closures or deformation.
Quite often, these predictions are accurate, agreeing well with new experimental data [15].
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The TITAN mass excess of −22516(13) keV agrees at the 1σ level with the AME03 value of
−22000(500) keV.

4.1.5 20,21Mg
Prior to our TITAN mass measurements, the mass of 20Mg was measured using the
24Mg(4He,8 He)20Mg reaction [217, 218], while the mass of 21Mg was measured using
the 24Mg(3He,6 He)21Mg reaction [219, 220]. For 20Mg the measured Q-values were -
60900(210) and -60677(27) keV, and for 21Mg the measured Q-values were -27488(40) and
-27512(18) keV. In each case, the measurements are in good agreement with each other.

4.1.5.1 Isospin multiplet energy levels

Determining the energy level of an isospin multiplet member relies on knowing both the
ground-state and excited state energies accurately. Except in the cases discussed below, the ex-
citation energies will be taken from the National Nuclear Data Center [114], while the ground-
state masses will be taken from the AME2012 [69]. The energy of the Jπ = 0, T = 2 state in
20Na depends on knowing the proton separation energy. Recent measurements of the ground-
states of 20Na and 19Ne, led to an improved proton separation energy of 2190.1(11) keV. Com-
bining this with a new excitation energy measurement with the value compiled in [221], leads
to an average value of 6524.0(98) keV, a value that is shifted by 10 keV as compared to the tab-
ulated value [114]. In 21Mg, a new measurement of the Jπ = 1/2+ state was completed [222]
which, when averaged with the NNDC [114] value, yields 200.5(28) keV.

4.2 Discussion and measurements from this study
To determine the atomic masses presented here, we follow the procedure described in sec-
tion 3.3.6. For 51Ca, 51V was used as a reference, for 52Ca, 58Ni and 52Cr were used as
references in two separate measurements, while for 20,21Mg, 23Na was used as a reference.
In all cases, the mass of the reference is much better known than the precision achieved in
the experiment. Because high precision was not required in these measurements, the standard
one-pulse quadrupole excitation was used. Further, the measurements were completed with
singly charged ions, as the gain in precision from charge breeding were not needed. The Ca
and K measurements will be compared to the values from AME03, as previous measurements
in [223], and the measurements presented here, dominate the data in both AME11 and AME12.

In order to correct for the ion-ion interaction arising from potential contaminants simulta-
neously trapped with the ion of interest, a “count-class” analysis [204] (section 3.3.7.5) was
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conducted. In the case of the 51,52Ca and 51K measurements, large amounts of contamina-
tion from V and Cr were observed. This contamination was removed from the trap via dipole
cleaning.

For the 20,21Mg measurements a count-class analysis was not strictly needed, because the
IG-LIS blocked nearly all contaminants from being ionized. However, to be conservative a
count-class analysis was done, and the corresponding errors were folded into the total un-
certainty. Enough statistics were collected so that the count-class error was included in the
statistical analysis for 21Mg, while for 20Mg the difference between the analyses with one de-
tected ion and with all detected ions yielded a systematic error of 38 ppb. Because these results
are of a higher precision than the Ca and K measurements we also include the conservative
harmonic distortion and magnetic field misalignment shift of 4.3∆(m/q) ppb, resulting in sys-
tematic errors of 9.6 ppb for 21Mg and 12.9 ppb for 20Mg.

4.2.1 Calcium and Potassium at N = 32

Typical resonances for 51,52Ca are shown in figure 4.3. For 51Ca, the measured mass excess
of −36339(23) keV is in disagreement with the AME03 value of −35863(94) keV, differing
by 476(97) keV. As shown in figure 4.1, this result is in agreement with the TOF based mea-
surements, but is in strong disagreement with the 4 reaction based measurements. Recently,
ISOLTRAP also measured the mass of 51Ca [59], obtaining a value of −36332.07(58) keV,
which agrees with our measurement.

For 52Ca, the measured mass excess of −34245(61) keV disagrees with the AME03 value
of−32509(699) keV. The TITAN mass value is 1.74 MeV more bound than the AME03 value.
This is comparable to the deuteron’s binding energy of 2.22 MeV. ISOLTRAP has also mea-
sured 52Ca, obtaining a value of −34266.02(71) keV [59], which also agrees will with the
TITAN measurement.

These measurements, combined with the measurement of 51K, create much more binding
leading up to the sub-shell closure at N = 32. This is quite significant, and is in line with the
observed high excitation energy of the E(2+) state in 52Ca [118]. Figure 4.4 shows the S2n

values tabulated in AME03, the TITAN values and the recent ISOLTRAP values. The values
for 50Ca and 48−50K are from a previous TITAN measurement campaign [223]. The TITAN
and ISOLTRAP mass values clearly show a sub-shell closure at N = 32, using the previous
explained signature for the behaviour.

Next, we examine if theory is able to reproduce these results. Figure 4.5 shows the S2n en-
ergies for the calcium chain, while figure 4.6 shows the difference between the experimentally
measured and theoretical values. The NN+3N(MBPT) was calculated in the extended p f g9/2
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Figure 4.3: Typical TOF-ICR resonances (as in figure 3.17) of 51,52Ca and 51K. The blue
line is a fit of the theoretical line shape [182].
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Figure 4.6: Difference between calculated and experimental S2n energies. The
NN+3N(MBPT) calculation agrees well with the experimental values.

valence space, on top of a closed 40Ca core. The NN forces are included at next-to-next-to-next-
to leading order (N3LO), while the 3N forces are included at N2LO. For the 3N interaction,
the short-range coupling constants were fit to the binding energy of 3H and the charge radius
of 4He [224]. The dominant component of the 3N interaction amongst the valence neutrons
is due to the long range, two-pion exchange component of the 3N force [58, 119]. In the CC
calculation, the chiral NN interaction was included at N2LO, while a schematic 3N interac-
tion was included by integrating one nucleon in the leading order 3N force over the Fermi
momentum in symmetric nuclear matter [120]. The short range couplings were adjusted to
reproduce the binding energies of 48,52Ca. The calculation is done using the CCSD approxima-
tion, and includes 3-particle-3-hole excitations perturbatively within the Λ-CCSD(T) approach
[225]. The NN+3N(MBPT) calculation reproduces the experimental values quite well, while
the GXPF1A calculation is in fair agreement. The CC and KB3G calculations have much larger
deviations, with both the CC and KB3G calculations consistently underbinding, as compared
to experiment. As already shown in figure 2.7, both the NN+3N(MBPT) and CC calculations
are able to reproduce the measured E(2+) in 54Ca, while the phenomenological interactions
GXPF1A and KB3G do not. Mass measurements thus provide an alternative way of differen-
tiating between the models. Here, the calculations using NN+3N(MBPT) seems to provide a
better description than the CC calculations or the phenomenological interactions.
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Table 4.2: Measured mass values for 51,52Ca, 51K, and 20,21Mg compared with the atomic mass evaluation [85, 69]. The Ca
and K values are compared to AME03, while the Mg values are compared to AME12.

Nuclide Reference T1/2 TRF (ms) Frequency Ratio r ME (keV) MEAME (keV) ∆ME (keV)
51Ca 58Ni 10.0 (8) s 77 0.87961718 (42) −36339. (23) −35863. (94) 476. (97)
52Ca 58Ni 4.6 (3) s 77 0.89691649 (187) −34260. (101) −32509. (699) 1750. (700)
52Ca 52Cr 4.6 (3) s 77 1.00043782 (158) −34236. (76) −32509. (699) 1730. (700)

52Ca average −34245. (61) −32509. (699) 1740. (700)
51K 51V 365 (5) ms 77 1.00062561 (28) −22516. (13) −22002. (503) 510. (500)

20Mg 23Mg 90 (6) ms 97 0.870765248 (87) 17477.7 (18) 17559. (27) 81. (27)
21Mg 23Mg 122 (2) ms 97 0.913956913 (35) 10903.85 (74) 10914. (16) 10. (16)
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Figure 4.7: Typical TOF-ICR resonances (as in figure 3.17) for 20,21Mg. The blue line is
a fit of the theoretical line shape [182].

4.2.2 A = 20, 21 isobaric multiplet mass equation
Resonances for 20,21Mg are shown in figure 4.7. The measured mass excess of
10903.85(74) keV for 21Mg agrees with the tabulated AME12 value of 10914(16) keV, how-
ever, the measured uncertainty has been improved by over an order of magnitude. The mea-
sured mass excess of 17477.7(18) keV for 20Mg disagrees with the tabulated AME12 value of
17559(27) keV at the 3σ level, with the uncertainty being improved by an order of magnitude.
The measured values are summarized in table 4.2.

Table 4.3 summarizes the fit results of the quadratic and quartic forms of the IMME for the
A = 20 and 21 multiplets. For each multiplet the χ2 of the fit increased as compared to the
values tabulated in [129]. For the A = 20 multiplet, nearly all of the uncertainty now resides in
the excitation energy of the T = 2 state in 20Na. The χ2 of the quadratic fit increased from 1.1
to 10.2, an increase of nearly an order of magnitude. The best fit is obtained with the cubic fit,

Table 4.3: Extracted IMME parameters for the A = 20 and 21 multiplets. Mass excesses
are taken from [69] and excitation energies Ex from [114] and [226], except where
noted. Also shown are the d and e coefficients for cubic and quartic fits and the
χ2 values of the fit. Shell model calculation results using the USDA/B plus INC
interactions are presented.
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Table 4.3: Continued from previous page.
Nuclide Tz ME(g.s.) (keV) Ex (keV)
A = 20, Jπ = 0+, T = 2
20O +2 3796.17 (89) 0.0
20F +1 -17.45 (3) 6519.0 (30)
20Ne 0 -7041.9306 (16) 16732.9 (27)
20Na -1 6850.6 (11) 6524.0 (97) a

20Mg -2 17477.7 (18) b 0.0
Ref. a (keV) b (keV) c (keV) χ2

This Work 9689.79 (22) -3420.57 (50) 236.83 (61) 10.2
Ref. [129] 9693 (2) -3438 (4) 245 (2) 1.1

Fit d (keV) e (keV) χ2

Cubic 2.8 (11) - 3.7
Quartic Only - 0.89 (12) 9.9
Quartic 5.4 (17) −3.5 (18) -
USDA −0.1 -
USDA - −1.7
USDB −0.1 -

A = 21, Jπ = 5/2+, T = 3/2
21F +3/2 -47.6 (18) 0.0
21Ne +1/2 -5731.78 (4) 8859.2 (14)
21Na -1/2 -2184.6 (3) 8976.0 (20)
21Mg -3/2 10903.85 (74) b 0.0

Ref. a (keV) b (keV) c (keV) χ2

This Work 4898.4 (13) -3651.36 (63) 235.00 (77) 28.0
Ref. [129] 4894 (1) -3662 (2) 243 (2) 3.0

Fit d (keV) χ2

Cubic 6.7 (13) -
USDA −0.3
USDB 0.3

A = 21, Jπ = 1/2+, T = 3/2
21F +3/2 -47.6 (18) 279.93 (6)
21Ne +1/2 -5731.78 (4) 9148.9 (16)
21Na -1/2 -2184.6 (3) 9217.0 (20)
21Mg -3/2 10903.85 (74) b 200.5 (28) c

Ref. a (keV) b (keV) c (keV) χ2

This Work 5170.4 (14) -3633.6 (10) 220.9 (10) 9.7
Ref. [129] 5171 (10) -3617 (2) 217 (2) 3.5

Fit d (keV) χ2

Cubic −4.4 (14) -
USDA −1.2
USDB 1.9

aAverage of Refs. [227, 221]
bPresent work
cAverage of Refs. [226, 222]
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Figure 4.8: A = 20 Jπ = 0+ T = 2 quadratic residuals for (a) the AME2012 [69] mass
values, and (b) using the TITAN mass value for 20Mg. The large error bar for 20Na
(Tz =−1) is due to the uncertainty in the excitation energy. Excitated state energies
are listed in table 4.3

resulting in d = 2.8(11) keV and a χ2 of 3.7. A quadratic only fit results in e = 0.89(12) keV,
and a χ2 of 9.9.

For A = 21 there are two T = 3/2 isobaric multiplets, a ground state multiplet with Jπ =

5/2+ and an excited state multiplet with Jπ = 1/2+. For the Jπ = 5/2+ multiplet, the χ2 of
the quadratic fit increased from 3 to 28.0, an increase of nearly an order of magnitude. For
the Jπ = 1/2+ multiplet, the χ2 of the quadratic fit increased from 3.5 to 9.7. According to
this, the IMME has failed in both instances. Large cubic terms are required for both multiplets,
taking the values d = 6.7(13) kev for Jπ = 5/2+ and d =−4.4(14) keV for Jπ = 1/2+.

To test the role of 3N forces in these nuclei, the values for the IMME were calculated
using both the phenomenological interactions USDA/B supplemented with an isospin non-
conserving (INC) Hamiltonian of reference [228] and the NN+3N χEFT valence space inter-
action. The results for the USDA/B d and e coefficients are presented in table 4.3. For A = 20
in the USDA, the e term comes from mixing of states of similar energy but different isospin in
20F, 20Ne, and 20Na. The largest mixing comes from a pair of close by T = 0, 2 states in 20Ne.
The largest mixing for a single level stems from a Jπ = 0+, T = 0 state in 20Ne that is 641 keV
above the T = 2 state. The INC mixing matrix element of 49 keV pushes the T = 2 state down
by 3.8 keV, resulting in a quintic coefficient of e =−1.7 keV. With the USDB, these states are
nearly degenerate, resulting in an uncertainty that is too large to give a meaningful result. With
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Figure 4.10: Excited state A = 21, Jπ = 1/2+ T = 3/2 quadratic residuals for (a) the
AME2012 [69] mass values, and (b) using the TITAN mass value for 21Mg. Ex-
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an INC mixing matrix element of 49 keV, a T = 0 level 350 keV above the T = 2 state would
reproduce the experimental e value. There is a state 657(15) keV above the T = 2 state with
unknown spin that could reproduce the experimental e value if the INC matrix element was
≈ 70 keV.

The calculated d term for A = 20 comes from mixing in 20F and 20Na, however, the T = 2
states are well separated from nearby T = 1 states, resulting in a small shift and a too small
d term. The d-term for both the USDA and USDB are −0.1 keV. Experimentally, there are
many T = 1 states with unknown spin near the Jπ = 0+, T = 2 state. If one of these states was
an intruder (p- to sd-shell excitation) 0+ state there could be enough isospin mixing to give a
large d value.

The results for the A = 21 d-coefficients for the J = 5/2+ multiplet are −0.3 keV with
the USDA and 0.3 keV with the USDB, while for the J = 1/2+ multiplet are 1.2 keV with
the USDA and 1.9 keV with the USDB. These do not agree with experiment. These non-zero
values come from mixing with nearby T = 1/2 states in 21Ne and 21Na that can be interpreted
in terms of a two-level repulsion due to the INC Hamiltonian, as outlined in section 2.5.1.

For the J = 5/2+ state the largest two-level shift is due to a T = 1/2, J = 5/2+ state in 21Ne,
which in the USDA is 372 keV below the T = 3/2 isobaric analogue state. The INC mixing
matrix element is 25 keV, pushing the T = 3/2 level up by 1.6 keV, contributing +0.8 keV to
the d-coefficient. In order for this single state to give +6.7 keV for d it would have to lie about
50 keV below the J = 5/2+, T = 3/2 isobaric analogue state. There are experimental levels
that lie 10, 58 and 77 keV below the isobaric analogue state with unknown spins [114], which
may contribute to the observed d-coefficient. Further experimental investigation is required to
determine the spins of these states, which would shed light on the large measured d-term.

For the J = 1/2+ state the largest two-level shift is due to a T = 1/2, J = 1/2+ state in
21Ne that in the USDA is 246 keV above the T = 3/2, J = 1/2+ isobaric analogue state. The
INC mixing matrix element is 27 keV, pushing the J = 1/2+, T = 3/2 level down by 3.0 keV,
and giving a contribution of 1.5 keV to the d-coefficient. In order for this single level to give
d = −4.4 keV it would have to lie about 100 keV below the J = 1/2+, T = 3/2 IAS. There
is an experimental level 71 keV below with an unknown spin [114] that may contribute to the
large measured d-term. Again, further experimental investigation is required to determine the
spins of these states, which would shed light on the large measured d-term.

For the A = 21 multiplets, it is possible that the experimental results can be explained by
INC mixing with nearby T = 1/2 states, however, a full understanding from theory, and its
relationship to experiment, must be explored in more detail. In the two-level discussion above,
we only give the results for the most important state, but there are other states, including those
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Table 4.4: Experimental and calculated ground-state energies (in MeV) of 20,21Mg with
respect to 16O.

Nuclide Exp. USDA USDB NN + 3N Exp. - NN + 3N
20Mg −6.94 −6.71 −6.83 −6.89 −0.05
21Mg −21.59 −21.79 −21.81 −23.18 1.59

in 21Na, that contribute to the total.
The A = 20, 21 IMME’s were also calculated using χEFT interactions. These calculations

represent the first time that active protons and neutrons in the valence space have been used
with χEFT interactions in the shell model framework [162]. The calculated ground state en-
ergies for both 20,21Mg are listed in table 4.4, along with the results from the USDA/B. The
USDA and USDB both reproduce the ground state energies, while the χEFT calculation only
reproduces 20Mg. However, the ground state of 21Mg is overbound by 1.6 MeV. Because of
these large deviations in the cases where protons and neutrons are active in the valence space,
the calculated d and e terms have uncertainties that are too large to make a quantitative judge-
ment on their accuracy. For example, the A = 20 d term was calculated to be −18 keV, which
is vastly different from the experimental value of 2.8(11) keV. An interesting feature of these
χEFT calculations is the overbinding decreases as the Tz of the nuclei increases. While 21Mg
is 1.6 MeV overbound, 21F is only 0.8 MeV overbound. This results in a large cubic term of
d = −38 keV for the A = 21 multiplet. The χEFT calculations are currently being improved,
and recent developments [229] may result in closer agreement with experiment for these mul-
tiplets. While these calculations cannot reproduce the experimental values, they do represent
an important first step in developing interactions based on χEFT.
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Chapter 5

Summary

The abundance of data in experimental nuclear physics is only possible due to the increase in
the power and range of exotic beam facilities. The addition of the proposed facilities, such as
the Radioisotope Beam Factory (RIBF) in Japan, the Facility for Rare Isotope Beams (FRIB)
and the CARIBU facility in the USA, and the Advanced Rare Isotope Laboratory (ARIEL) in
Canada will greatly increase the reach of experiments to access the approximately 7000 bound
nuclei that are predicted to exist [1]. Many of these nuclei are neutron-rich, and touch on many
important aspects of nuclear physics, as their masses are important inputs for astrophysical r-
process calculations, and in determining the evolution of nuclear structure towards the neutron
dripline.

In the past decade, three-nucleon forces have been shown to be crucial in determining the
structure of neutron rich nuclei, as three-nucleon forces become increasingly important far from
stability. These three-nucleon forces have been derived in the framework of effective field theo-
ries based on quantum chromodynamics. χEFT based interactions offer predictive power to the
whole nuclear chart, as only a few coupling constants need to be fit to existing data. Currently,
these χEFT calculations are able to account for the two-nucleon interactions at next-to-next-
to-next-to-leading order (N3LO), while the three-nucleon interactions are included at N2LO.
Three-nucleon interactions are required, because when bare two-nucleon interactions are used,
experiment is not reproduced. This is particularly seen in the magic number N = 28 in the cal-
cium isotopic chain, as it is only reproduced with the inclusion of the three-nucleon interaction.
This is in contrast to the established calculations performed with phenomenological models,
which are fit to a large amount of experimental data in the region applicable to the model.
Further, these phenomenological models only include the effect of two-nucleon interactions.
While these phenomenological models can reproduce the magic number at N = 28, it may be
that fitting the matrix elements in these models may mimic the effects of three-nucleon forces.
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In this work, the first Penning trap mass measurements of the radioactive nuclei 51,52Ca,
51K, and 20,21Mg were performed at TRIUMF’s Ion Trap for Atomic and Nuclear science
(TITAN). The measurements of 20,21Mg required the first use of the Ion Guide Laser Ion
Source (IG-LIS), which suppressed the sodium contaminants by up to a factor of 106.

The measured Ca and K nuclides were used to test the predictions of χEFT based calcula-
tions in the vicinity of the predicted neutron magic numbers N = 32 and 34. The mass mea-
surements showed a significant flattening of the two-neutron separation energies leading up to
N = 32, with large deviations from the values tabulated in the 2003 Atomic Mass Evaluation.
In fact, the mass of 52Ca was found to deviate from the tabulated value by 1700(700) keV. The
TITAN mass values for 51,52Ca were confirmed by a later mass measurement by the ISOLTRAP
Penning trap mass spectrometer. The masses of 53,54Ca were measured by ISOLTRAP’s multi-
reflection time-of-flight mass spectrometer. The combination of the TITAN and ISOLTRAP
mass measurements showed excellent agreement with the χEFT based calculation and the
GFPX1A phenomenological interaction. A measurement of the first E(2+) in 54Ca at the
RIKEN facility agrees with the prediction of the χEFT based interaction.

The masses of 20,21Mg were used to test the predicted quadratic behaviour of the isobaric
multiplet mass equation (IMME) using both the phenomenological interactions USDA and
USDB, and the χEFT three-nucleon interaction. This is the first time that χEFT calculations
based in the shell model were used in open shell nuclei, representing an important step in the
investigation of χEFT based calculations. It was found that large cubic terms in the IMME
were required to reproduce the experimental data. Neither the USDA/B nor the χEFT calcula-
tions were able to reproduce the experimental cubic terms. The USDA/B calculations typically
produced cubic terms near 0 keV, in disagreement with the 3-7 keV values found experimen-
tally. The χEFT based calculations produced very large cubic terms of between −20 to −40
keV with quite large errors, preventing any definitive statements as to their origin.

In summary, the influence of three-nucleon forces in χEFT have:

• Reproduced the E(2+) in 48Ca, showing the need for 3N forces,

• Correctly predicted the E(2+) in 54Ca, as confirmed by a measurement at RIKEN [118]

• Correctly predicted the behaviour of the S2n’s in the calcium isotopes, as confirmed by the
measurements presented in this thesis, and by subsequent measurements by ISOLTRAP
[59].

Further, we have performed the first mass measurement of 51K. The A = 20 and 21 isobaric
multiplet mass equations were aslo tested with TITAN:
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• The phenomenological interactions USDA and USDB could not reproduce the large cu-
bic d and quartic e terms observed

• Interactions using 3N forces showed large deviations and errors, indicating that further
work is required for cases where both protons and neutrons are active in the calculation.

In each case, theory must further refine their calculations to understand the origin of the large
observed d and e terms.
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[46] R. N. Wolf, D. Beck, K. Blaum, C. Böhm, C. Borgmann, et al.. On-line separation of
short-lived nuclei by a multi-reflection time-of-flight device. Nuclear Inst. and
Methods in Physics Research, A, 686, 82–90 (2012). doi:10.1016/j.nima.2012.05.067.
→ pages 15

[47] Y. Ito, P. Schury, M. Wada, S. Naimi, T. Sonoda, et al.. Single-reference high-precision
mass measurement with a multireflection time-of-flight mass spectrograph. Phys. Rev.
C, 88, 011306 (2013). doi:10.1103/PhysRevC.88.011306. → pages 15

[48] W. R. Plaß, T. Dickel, and C. Scheidenberger. Multiple-reflection time-of-flight mass
spectrometry. International Journal of Mass Spectrometry, 349-350, 134–144 (2013).
doi:10.1016/j.ijms.2013.06.005. → pages 15

105

http://dx.doi.org/10.1103/PhysRevC.83.055501
http://dx.doi.org/10.1103/PhysRevLett.106.122501
http://dx.doi.org/10.1016/0375-9474(88)90072-3
http://dx.doi.org/10.1002/mas.20173
http://dx.doi.org/10.1016/j.physrep.2005.10.011
http://dx.doi.org/10.1016/j.ijms.2013.03.018
http://dx.doi.org/10.1023/A:1011964401634
http://dx.doi.org/10.1016/0168-583X(87)90583-0
http://dx.doi.org/10.1016/j.nuclphysa.2010.01.069
http://dx.doi.org/10.1016/j.nima.2012.05.067
http://dx.doi.org/10.1103/PhysRevC.88.011306
http://dx.doi.org/10.1016/j.ijms.2013.06.005


BIBLIOGRAPHY

[49] G. Gabrielse, A. Khabbaz, D. S. Hall, C. Heimann, H. Kalinowsky, et al.. Precision
Mass Spectroscopy of the Antiproton and Proton Using Simultaneously Trapped
Particles. Phys. Rev. Lett., 82, 3198 (1999). doi:10.1103/PhysRevLett.82.3198. →
pages 15
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Appendix A

Contributions to TITAN

A.1 Axial Frequency Measurements
Penning trap experiments that use the TOF-ICR or PI-ICR detection methods do not rely on
detecting the pick-up signals of an ion’s motion on the trap electrodes. Instead, the radial
frequencies are determined either by extracting the ion through the magnetic field gradient
of the superconducting solenoid magnet, and measuring the change in time-of-flight (section
3.3.4), or by projecting the motion of the ion on to a position sensitive detector and measuring
the phase accumulation of the ion [179]. Both of these methods only allow for the detection of
the radial motion of an ion.

In section 3.3.4.6 I describe a new method to measure the axial frequency of an ion in a
Penning trap using destructive detection methods.

A.2 Arbitrary function generator programming
To perform a cyclotron frequency measurement a list of desired frequencies must be given to
an Arbitrary/Function Generator (AFG). Previously at TITAN this was accomplished through
the use of two AFGs, the first called the “frequency generator”, which supplied the radio-
frequency for the ion excitation, and the second called the “ladder”. The “ladder” generator
was programmed with a staircase waveform, with the number of steps corresponding to the
number of frequencies to be applied when generating a resonance. The “frequency” generator
was programmed to be frequency modulated about a user supplied centre frequency νcent and a
modulation depth of±νmod. The output of the “ladder” was sent to the modulation input of the
“frequency” generator, thus generating a series of frequencies from νcent−νmod to νcent+νmod.

Several drawbacks of this technique are:
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A.2. ARBITRARY FUNCTION GENERATOR PROGRAMMING

• Output voltage noise from the “ladder” generator will cause jitter of the “frequency”
generator’s output frequency

• To ease the understanding the total system cycle, each step in the “ladder” waveform was
generally set to a convenient length (20 ms, 50 ms, 100 ms, etc.), limiting the range of
dipole and quadrupole excitation times

• Drifts in the calibration constants of the “ladder” output digital-to-analog converter could
cause systematic shifts in the absolute output frequency of the “frequency” generator

To overcome these problems, a model 33521A AFG from Agilent (now Keysight) was
purchased to apply the quadrupole field, while a model 33500B AFG with expanded memory
from Agilent was purchased for dipole cleaning and stored waveform inverse Fourier transform
(SWIFT) cleaning [230]. Both AFG models have a “list” mode, where a list of frequencies can
be programmed to the AFG. The AFG can then be externally triggered to step through the list,
not only eliminating the need for the “ladder” generator, but also eliminating potential jitter and
offset issues arising from the digital-to-analog converter of the “ladder” generator. A potential
systematic from the use of the “ladder” generator was discovered during a measurement of the
51Cr Q-value [173] (affected data was not included in [173]), where it was found that the output
of the “ladder” generator caused the frequency modulation range to be smaller than desired.
This did not affect resonance data where the central portion of the resonance lineshape was
near the centre of the scan range, instead, only affecting data near the edges of the scan range.
By using the “list” mode of the 33521A AFG, systematics from the frequency modulation
range are eliminated. The 33521A AFG also expands the capabilities of the TITAN system,
as there is no need for a “ladder” generator, meaning that an arbitrary series of frequencies
can be programmed into the AFG, and can be applied for any length of time, eliminating the
cycle-length dependence on the “ladder” waveform.

One potential application of the new frequency generation system is the measurement of
co-trapped ions. As an example, suppose that two ion species are delivered to MPET simul-
taneously, each with cyclotron frequencies of ν1,2. The dipole AFG can be programmed such
that for the first half of the measurement ion2 is dipole cleaned, while the quadrupole AFG
steps through the frequencies required to generate a resonance of ion1. During the second
half of the measurement, the dipole AFG will then dipole clean ion1, while the quadrupole
AFG steps through the frequencies required to generate a resonance of ion2. In this way, the
resonance of each ion are generated at the same time. This is useful if one of the ions has a
well known mass and can serve as a reference to calibrate the magnetic field. Any systematics
arising from magnetic field drifts are removed since measurements are built in such a way that
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each ion will see the same drifts, assuming the magnetic field drifts are slow (i.e. if magnetic
field fluctuations occur on time scales longer than several minutes or longer).

The code to program the AFGs is hosted at http://github.com/aarongallant/Afgcontrol.

A.3 SortEVA
SortEVA is a program written to streamline the analysis of large numbers of resonance files,
particularly when optimizing the trapping voltages in MPET. The general method used at TI-
TAN to optimize the trapping electrodes can be found in [155]. The optimizing procedure
generates a large quantity of data, all of which must be fit individually in order to ensure the
quality of the data, and due to limitations of the existing fitting program. To overcome these
limitations, SortEVA (figure A.1) was written to organize the files generated from the data ac-
quisition system, and to perform fits to each of the files. The resulting fits are then stored in
memory, allowing the user to examine the quality of each fit, ensuring both that the data in the
file is “good”, and that the fit is correct.

An earlier version of this program played a key role in determining the systematic errors
during the first uses of on-line, highly-charged ions in the following publications [147, 174,
144].

A.4 Correlations between adjacent frequency ratios
To eliminate systematics effects, as described in section 3.3.7, the ratio of frequencies is taken
between the ion of interest and a well known calibrant, or reference, ion (section 3.3.6). Gen-
erally, the sequence of measurements is as follows: reference, ion of interest, reference, ion of
interest, reference, etc. This pattern of measurements can be seen in figure A.2. The reference
frequency is interpolated to the time of the measurement of the ion of interest, thus leading
to correlations between the frequency ratios Ri and Ri+1, as both ratios depend on a shared
reference measurement. It may also be the case that two or more measurements of the ion
of interest are between the same set of reference measurements. Here we will derive the co-
variance between frequency measurements that share reference measurements. This work was
derived independently by Stephan Ettenauer [197], and was published in [174].

The frequency between any two references can be interpolated as

ν(T ) =
ν j+1−ν j

t j+1− t j

(
T − t j

)
+ν j (A.1)

where T is a time between the reference measurements at times ti and ti+1. The covariance
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Figure A.1: Screen capture of SortEVA analysing a data set. Clockwise from upper left:
Z-class histogram (number of detected ions after extracting from the trap), plot of
fitted frequencies against the measurement number along with a running list of the
fit results (filename, frequency, frequency uncertainty, reduced χ2), resonance and
fit along with TOF histogram, and the main fit dialog for monitoring the program’s
progress.

between two frequency measurements that share one reference measurement (for example, the
correlation between the frequency ν(Ti+2) and ν(Ti+3) in figure A.2) is

cov(ν(Ti),ν(Ti+1) =

(
∂ν(Ti)

∂νi+1

)(
∂ν(Ti)

∂νi+1

)
cov(νi+1,νi+1)

=

(
Ti− t j

t j+1− t j

)(
t j+2−Ti+1

t j+2− t j+1

)
σ

2
j+1

(A.2)

where σ j+1 is the uncertainty of the ( j + 1)th reference measurement. If we define the fre-
quency ratio to be R = νre f /ν , the covariance between the frequency ratios is then

cov(Ri,Ri+1) =
1

νiνi+1
cov(ν(Ti),ν(Ti+1)) . (A.3)

where νi is the ith frequency measurement of the ion of interest.
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FIG. 4. Illustration of the correlation introduced between adjacent
frequency ratio measurements from shared references. The solid
circles (tj ’s) represent reference measurements of νc,ref and the open
circles (Ti’s) show the interpolation of νc,ref to the center time of a
measurement of an ion of interest. From the figure it is clear that Ti is
correlated with Ti+1, Ti and Ti+1 with Ti+2, and Ti+2 with Ti+3 (details
follow in the text).

measurements of the ion of interest will often share a reference
measurement introducing correlations between the frequency
ratios. With the use of highly charged ions and the high level
of precision that can be reached it is important to include these
correlations when determining the final averaged frequency
ratio. The relative statistical uncertainty of the cyclotron
frequency in a measurement is related to the resolving power
as δma/ma ∝ R−1 ×

√
N

−1
[48] where N is the number of

detected ions. Here we present two cases shown in Fig. 4. First,
the most likely case where two measurements share a reference
measurement, and second, the case where several measure-
ments occur between two reference measurements. In practice
the second case does not occur because these data are generally
summed. In the second case, the analysis with the time
correlations and with the summed data will yield nearly the
same result because the summed data implicitly include time
correlations between the frequency measurements. For the first
case, the covariance relation between frequency ratios is

covar(Ri, Ri + 1)

= 1
νc,iνc,i + 1

(
Ti − tj

tj + 1 − tj

) (
tj + 2 − Ti + 1

tj + 2 − tj + 1

)
σ 2

j + 1, (5)

where the i and i + 1 refer to the ith and ith +1 measurements
of the ion of interest and the j ’s refer to the reference
measurements. For the second case, the covariance between
frequency ratios that share both references is

covar(Ri, Ri+1) = 1
νc,iνc,i+1

[(
tj+1 − Ti

tj+1 − tj

) (
tj+1 − Ti+1

tj+1 − tj

)
σ 2

j

+
(

Ti − tj

tj+1 − tj

) (
Ti+1 − tj

tj+1 − tj

)
σ 2

j+1

]
. (6)

Figure 4 illustrates the relationship between the variables
given in the above equations. In both cases the covariance is
proportional to the variance of the reference measurements. It

is desirable to measure the reference ion much more precisely
than the ion of interest to reduce correlation effects, however,
a trade-off must be made to maximize the statistics collected,
and hence, the precision, for the ion of interest.

B. Systematic errors and uncertainties

Several systematics must be taken into account. Systematics
relating to misalignment between magnetic and trap axes,
electric field miscompensation, relativistic effects, etc., are
minimized by choosing a reference ion which is close in m/q
to the ion of interest as these effects scale with the difference
in the charge-to-mass ratio $(m/q) [34]. To determine any
potential shifts from different m/q effects between the ion of
interest and the reference ion, a series of mass measurements
on 85Rb10,8+ and 87Rb9+ using 85Rb9+ as the reference were
completed. The extracted masses all agree within 1σ of the
literature value. Although no shifts were observed to be
conservative we take, as an upper limit on any systematic
effects, a systematic uncertainty of 42 parts per billion (ppb)
in the frequency ratio.

A second systematic effect stems from the ambiguity in
selecting the upper and lower time cuts on the time-of-
flight spectrum. The ambiguity arises from charge exchange
processes in the trap. If an ion undergoes charge exchange
with residual gas in the vacuum, these ions will manifest
themselves as a long tail in the time-of-flight spectrum. In
the present analysis the lower and upper levels were set
at 12 and 40 µs, respectively. The lower level was set
to 12 µs to maximize the number of on resonance ions
while minimizing background counts from the nearby H+

2
peak resulting from charge exchange in the trapping region.
Figure 5 shows a typical time-of-flight spectrum for 78Rb8+

which was trapped for 197 ms. The dashed-blue lines show
the lower and upper time cuts whereas the solid-red lines show
when, on average, 78Rb ions with different charge states would
arrive. To determine the systematic effect R̄ was determined
for upper level time cuts of 30, 35, 40, 45, and 55 µs for
both the ground and isomeric states. If the average frequency
ratio determined at 40 µs for either case was an extremum
the systematic effect was assigned to be the full range of the
extracted R̄’s, otherwise half of the range was assigned.
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FIG. 5. (Color online) Time-of-flight spectrum of ions extracted
from the MPET. See text for details.
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Figure A.2: Illustration of the correlation introduced between adjacent frequency ratio
measurements from shared references. The solid circles (t j’s) represent reference
measurements of νc,re f and the open circles (Ti’s) show the interpolation of νc,re f
to the centre time of a measurement of an ion of interest. From the figure it is clear
that Ti is correlated with Ti+1, Ti and Ti+1 with Ti+2, and Ti+2 with Ti+3. Figure
reproduced from [174].

The covariance between measurements that share both reference measurements (for exam-
ple points Ti and Ti+1 in figure A.2) can be found in a similar manner. The covariance is

cov(Ri,Ri+1) =
1

νiνi+1

[(
t j+1−Ti

t j+1− t j

)(
t j+1−Ti+1

t j+1− t j

)
σ

2
j +

(
Ti− t j

t j+1− t j

)(
Ti+1− t j

t j+1− t j

)
σ

2
j+1

]
.

(A.4)
The weighted average and uncertainty can then be calculated from

R̄ =
∑i, j

(
V−1)

i j R j

∑i, j (V−1)i j
(A.5)

with an accompanying uncertainty of

σ
2
R̄ =

1
∑i, j (V−1)i j

. (A.6)
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