Mass Measurement of Neutron Rich Isotopes at the TITAN Experiment

Maxime Brodeur TRIUMF/UBC

Outline

•Motivations for N-rich mass measurement

•Penning trap mass measurement

•Status of the TITAN experiment

Conclusion/outlook

TITAN: TRIUMF Ion Trap for Atomic and Nuclear science

Motivation for Mass Measurement

Neutron number N

Change of Neutron Rich Nuclear Structure

Structure change are seen through two-neutron separation energy: $S_{2n} = M(A-2, Z) - M(A,Z) + 2M_n$ (allows to avoid pairing effects)

H. Savajols et al., Eur. Phys. J A 25, s01, 23 (2005)

Mass Measurement around N = 32 and N = 34

Motivations:

- A model predicts a new magic number at N = 34 for Ca. Honma et al., Phys. Rev. C <u>65</u>, 1301R (2002)
- Experimental evidence of sub-shell at N = 32 in:
 Ti through measurement of the 2+ excited state energy. B. Fornal et al., Phys. Rev. C, <u>70</u>, 064304 (2004)
 Cr through Penning trap mass measurement. C. Guénaut et al., J. Phys. G: Nucl. Part. Phys., <u>31</u>, S1765 (2005)

Needs verification through mass measurement considering: •Sufficient precision: $\delta m/m \sim 10^{-6}$

•Sufficient precision: $\delta m/m \sim$ •Short measurement time ($T_{1/2} = 90$ ms for ⁵³Ca)

•Yield of at least 100 ions/s

Can be delivered by the Isotope Separator and Accelerator (ISAC) facility.

TITAN's Mass Measurement Penning Trap

Penning trap structure

Mass determination

Cyclotron frequency: V

Resolution:

$$\nu_{c} = \frac{1}{2\pi} \cdot \frac{q}{m} \cdot B$$
$$\frac{m}{\delta m} \approx \frac{T_{rf} q B \sqrt{N}}{m}$$

Time-Of-Flight (TOF) technique

In the process the ions are:

• submitted to an rf-excitation ω_{rf} of duration T_{rf} , then released

- accelerated by the magnetic field gradient: $\vec{F} = -\frac{E_r(\omega_{rf})}{B}\frac{\partial B(z)}{\partial z}\hat{z}$
- detect by an MCP where TOF is recorded

Large E_r = shorter TOF

The mass is found by a scan of ω_{rf} around the resonance: $\omega_{rf} = \omega_c = \frac{qB}{m}$

Status of the TITAN experiment

•RFQ has been tested with stable Li, Xe and Cs beams.
•69% transfer efficiency was obtained.
•rms emittance < 4 mm mrad at 4 keV.

•The EBIT has been fully commissioned in the ISAC experimental hall. *For more details about the EBIT see C. Champagne poster.*

•Penning trap and its optics are installed and aligned, ready for commissioning.

Planned mass measurements:

- 1. Halo nuclei study \rightarrow ¹¹Li, August 2007
- 2. CKM unitarity test \rightarrow ⁷⁴Rb, Winter 2007
- 3. Nuclear structure \rightarrow Ca, K, Sc \sim N = 32, Spring 2008

Collaboration / Acknowledgement

AN PLANCE CENELLSCHAP

<u>Special thanks to:</u> *The TITAN group at TRIUMF:*

Jens Dilling, Thomas Brunner, Alexei Bylinskii, Christian Champagne, Paul Delheij, Melvin Good, Alain Lapierre, Cecilia Leung, Ryan Ringle, Vladimir Ryjkov, Mathew Smith

and the rest of the TITAN collaboration:

U. of Calgary

U. of Windsor

Colorado School of Mines

Alignment of the vacuum chamber

At the phosphor screen:1 cm wide electron beamCrosses appear 1 mm thick

•Magnification: 10 fold

In the strong field region:

- •1 mm wide electron beam
- •Two 0.1 mm thick "crossed-hair" mask •e-gun and masks attached on electrode

structure

	Accuracy needed	Alignment accur.
Radial position of the chamber with the field.	±0.1 mm	±0.03 mm
Angular position of the chamber with the field.	±1 mrad	±0.2 mrad

Determination of the magnetic field centerline

Determined by turning a radial Hall probe at different radial position R from the bore centre.

The displacement *D* is given by: $D \cong A \cdot R/\Delta$

	Hall probe (inches)	e-gun (inches)
Vertical shift (down)	0.245(5)	0.242(3)
Horizontal shift (east)	0.025(5)	0.030(3)

The centreline is offset by ~ 1/4". Compensated by offsetting the beam line.