Electron capture branching ratio measurements for double decay experiments at TITAN-TRIUMF T. Brunner^{1,2}, J. Dilling^{1,3}, D. Frekers⁴, R. Krücken², A. Lapierre¹ and the TITAN-EC collaboration ¹TRIUMF, Vancouver ²TUM, München ³UBC, Vancouver ⁴Universität Münster ### Motivation - Neutrino physics neutrino flavour eigenstates i and mass eigenstates j are not equal: $| \ _i = U_{ii}^{L} | \ _i$ Neutrino oscillations indicate a small neutrino mass U^L: Weak Mixing Matrix Neutrino character still unknown \rightarrow is the neutrino a Dirac particle \rightarrow or a Majorana particle ### Neutrino Experiments ## Neutrino oscillation Relative mass scale, m², " - Indicates a neutrino mass [1] - Determination of mixing angle - Determination of m² - Experiments: SuperK, SNOlab ### Tritium decay Absolute mass scale, m_e - End point energy determination of ³H decay - Effective mass for degenerated neutrinos [2]: $m_{e}^{2} = |U_{ei}|^{2} m_{i}^{2}$ - Experiment: KATRIN http://students.washington.edu/mleber/researchProposal.pdf #### Double decay Absolute mass scale, Neutrino character Believed to occur in at least two modes: - Allowed in Standard Model - $T_{1/2} > 10^{17} \text{y}$ #### decay - Physics beyond Standard Model - $T_{\frac{1}{2}} > 1.5 \cdot 10^{25} y [3]$ - If observed: $| m | = (F_N T_{1/2})^{-1/2} eV$ with nuclear matrix element F_N [4] [3]C.E. Aalseth et al., *Phys. Rev. D* 65(2002)092007 [4]S.R. Elliott and P. Vogl, *Annu. Rev. Nucl. Part. Sci.* 52(2002)115 ### Nuclear matrix elements associated with double #### Theoretical description with g_{DD} Theoretical description of these double decay nuclei with nuclear shell-model or proton-neutron Quasiparticle Random Phase Approximation (pn-QRPA) Adjustable particle-particle parameter g_{DD} in pn-QRPA for all **single** and **double** decay calculations [5] The many-particle Hamiltonian is a function of g_{no} tuning g_{pp} decay appears to be rather sensitive to g_n by this decay [6 and ref. therein] Fitting of calculated nuclear matrix elements to half life of decay leads to g_{pp} decay rather insensitive to g_{DD} [5] M. Kortelainen and J. Suhonen, to be published in Phys. Rev. C 2007 #### Theoretical situation used as a test case for pn-QRPA Extrapolation of calculated matrix elements to 2 half life provides g_{pp} This decay proceeds only via 1⁺ intermediate states. The nuclear matrix element for this state coincides with total value of the matrix element near $g_{00} = 1$, the so called single-state-dominance (SSD) In this case, the 2 matrix element simplifies to: M_{tot} M_{FC} M This allows, in some cases, a theory cross check [6] g_{pp} is derived from 2 decay half life and tested in and EC decays single The loose end: EC rates poorly known or not known at all #### **Experimental situation** Theory does not perfectly agree with experiments Case ¹¹⁶Cd: M_{tot} leads to $g_{pp} = 1.03$ $M_{EC} = 0.18$ The resulting EC matrix element M_{FC} does not fit with experimental value (EC branching ratio): $M_{EC} = 1.4$ = 0.095% theory $M_{EC} = 0.69$ $= (0.023 \pm 0.006)\%$ experiment 1 Conclusion: $g_{DD}() \sim 1$ reproduces 2 decay half life in QRPA by two compensating errors: $= (0.0019 \pm 0.0003)\%$ experiment 2 Theoretical EC matrix element too large Theoretical matrix element too small [7] J. Suhonen, Phys. Lett. B 607(2005)87 #### **Conclusion of present matrix element status:** State-of-the-art theory (shell model, QRPA) is not in satisfactory agreement with experiments our goal: provide a new and different approach to experimental BR determination using a clean and backing-free ion-trap system. Then compare the new results with theory to determine systematic theoretical shortcomings and to guide further developments towards a better theoretical understanding of 0 -decay. # Determination of M_{EC} with BR measurements at TITAN ### Novel approach to determine M_{FC} - Conventional methods of implanting isotopes on a tape station reached a limit of sensitivity - ISAC facility at TRIUMF for isotope production - TITAN (http://titan.triumf.ca) trap system with the EBIT (without electron beam) as a central component of the measurement - Carrierless suspension due to storage in the trap - Segmented center electrode of the EBIT accommodates seven X-ray detectors radially positioned around the trap (2.1% solid angle of x-ray detectors) - 6T magnetic field (superconducting coil) in the trap guides the decay electrons out of the trap onto a detector - 10⁵ to 10⁶ ions in trap - Holding times of minutes up to several hours (P 10⁻¹¹ mbar) - Monitoring of trapped ions via a PIPS (Passivated Implanted Planar Silicon) detector for detection - No contamination due to isobar separation with trap techniques New method with trap and separation of and X-ray provides contamination and bremsstrahlung-free measurements #### Timeline - Optimization of geometry by GEANT simulations - Commissioning of the beam line in November - First run with 100 Tc to show how the technique can compete with other measurements - $T_{1/2}$ =(15.8±0.1)s - EC branch - ~ 0.0018% Solid angle EC 2.1% - X-ray detection efficiency of 30% - Accumulating 10 spills in EBIT 100000 ions in trap - Detection time of 15s calculates to [10] 50000 decays ~0.9 EC decays - 5.6*10⁻³ detected EC in 15s - A 10% accuracy needs 100 detected events: ~17.700 EBIT trap fills 74h 14h 20% overhead - Total estimated time 88h #### **Nuclides to be determined** decay candidates that are under investigation in experiments such as Majorana, EXO, COBRA, CUORE and others [6]: ¹⁰⁰Mo: ¹⁰⁰Tc(EC) 0⁺, T_{1/2}=15.8s] K _{1/2}=17.5keV ¹¹⁰Pd: ¹¹⁰Ag(EC) $[1^{+} 0^{+}, T_{1/2}=24.6s]$ K _{1/2}=21.2keV ¹¹⁴Cd: ¹¹⁴In(EC) 0⁺, T_{1/2}=71.9s] K _{1/2}=25.3keV ¹¹⁶Cd: ¹¹⁶In(EC) 0^{+} , $T_{1/2}$ =14.1s] K _{1/2}=25.3keV ⁸²Se: ^{82m}Br(EC) 0⁺, T_{1/2}=6.1min] K _{1/2}=11.2keV ¹²⁸Te: ¹²⁸I(EC) 0^{+} , T_{1/2}=25.0min] K _{1/2}=27.5keV ⁷⁶Ge: ⁷⁶As(EC) K _{1/2}=9.9keV 0^{+} , $T_{1/2}$ =26.2h] [10] TRIUMF Research Proposal E1066