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Abstract

The TITAN ion trap facility is currently being built at TRIUMF. For the first time,

it will be possible to make precision mass measurements of highly charged radioactive

ions, using the ISAC radioactive beam facility. Highly charged ions (HCI) extracted

from the EBIT charge breeder will have a temperature of tens of eV/charge or more,

too high for direct injection into the precision Penning trap mass spectrometer. For

this reason, we are currently developing an intermediate Penning cooler trap to pre-

cool the HCI prior to the mass measurement. One possible route is electron cooling,

where the HCI interact with a cloud of electrons, which self-cool via the emission of

synchrotron radiation in the strong magnetic field of the cooler trap. Another possi-

bility is sympathetic cooling with initially cold protons provided by a cold ion source.

In this thesis, simulations of electron and proton cooling of highly charged ions are

presented, including the potentially detrimental effects of radiative, dielectronic, and

three-body recombination. Cooling times are given under different initial conditions

for both proton cooling and electron cooling. A test geometry for the cooler trap

is put into a computer simulation code such as SIMION, and injection of ions, elec-

trons, and protons are simulated. Our preliminary design for a cooler trap which can

accommodate both electron and proton cooling is presented.

Using singly charged ions, the mass excess of 11Be was measured at TITAN to

be 20176.936(0.531) keV, which is about 10 times better than the previous value. In



addition, an ion source was built for testing some of the TITAN subsystems1.

1This work was supported in part by grants from CFI and NSERC.
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Chapter 1

INTRODUCTION

1.1 Atomic mass models

The atomic mass includes the interactions in the atom; it is not only the sum of

the bare masses of its constituents but also a binding energy. A nuclide consists of

protons, neutrons and electrons; the binding energy B(N, Z) is

B(N, Z) = [Z · (mp + me) + N · mn −M(Z, N)−Be/c
2] · c2, (1.1)

where the proton mass mp = 938.272 MeV, the electron mass me = 0.511 MeV, the

neutron mass mn = 939.565 MeV, Z is the number of protons, N is the number of

neutrons, M(Z, N) is the atomic mass of a nuclide, and Be is the binding energy of

the electrons. A detailed review on determination of nuclear masses was prepared

by D. Lunney et al. [1]; the theory on mass models and experimental methods are

described in it. The approaches to the formulation of mass models are roughly divided

into macroscopic, microscopic and macroscopic-microscopic.

From a macroscopic aspect [2, 3, 4], the binding energy simply depends on the

number of nucleons. The well-known mass formula was given by von Weizsäcker in
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1935; subsequently it was improved by Bethe, Bacher, Myers and Swiatecki:

B(N, Z) = avolA− asfA
2/3 − acZ

2A−1/3 − (asymA + assA
2/3)I2, (1.2)

where I = (N − Z)/A, avol, asf , ac, asym, and ass are the parameters of the volume

term, the surface term, the Coulomb term, the asymmetry term, and the surface-

symmetry term, respectively.

Microscopic treatments involve the nonrelativistic Hartree-Fock approach or the

relativistic Brueckner-Dirac method. A nonrelativistic Schrödinger equation can de-

scribe a nucleus in the nonrelativistic case if we know the interaction potential between

proton and proton, proton and neutron etc. According to the Schrödinger equation

Hψ = Eψ, (1.3)

where the Hamiltonian H can be given by

H = − h̄2

2M

∑

i

∇2
i +

∑

i>j

Vij +
∑

i>j>k

Vijk. (1.4)

If we can calculate the energy levels E, then the binding energy is simply given

by -E. The interaction potential involves the two-nucleon interactions Vij and the

three-nucleon interactions Vijk. Strong, weak and electro-magnetic forces are in-

volved in a nucleus; it is not a simple matter to find the proper potentials to describe

the two-nucleon interactions and the three-nucleon interactions. The nonrelativistic

Hartree-Fock approach uses an effective Hamiltonian to replace the real interaction
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Hamiltonian which is hard to define. The effective Hamiltonian is given by

Heff = − h̄2

2M

∑

i

∇2
i +

∑

i>j

υij (1.5)

A suitable set of the ten-parameters υij is given in references [5, 6, 7] following the

method of Vautherin and Brink. Furthermore, the like-nucleon pairing term and

Wigner effect term should be included [8]. Between like nucleons, the δ-function

pairing term [9, 10] is given by

υpair(rij) = Vπqδ(rij). (1.6)

The pairing-strength parameter Vπq is different for neutrons and protons, and depends

on whether N is even or odd and whether Z is even or odd. The Wigner effect

term [11, 12] is another correction to binding energy. It can be given simply by

Ew = Vwe(−λ|N−Z|/A). (1.7)

When λ $ 1, the extra energy exists primarily for N = Z. In the relativistic case,

the proton and neutron are treated as Dirac spinors, and they can interact by the

exchange of mesons [13].

Usually a combination of macroscopic and microscopic approaches is used. The

binding energy is first calculated based on macroscopic methods, then shell effects,

pairing, and Wigner effect etc. are taken into account.

Some mass formulas (see the details in reference [1]) such as the Skyrme-Hartree

Fock mass formulas, the HFBCS-1, the HFB-1 mass formulas, the HFB-2 mass for-

mula, the Duflo-Zuker mass formula, etc. are based on macroscopic, microscopic or
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macroscopic-microscopic models and use some independent mass-related parameters

to fit a real data set consisting of thousands of masses. Different values of parame-

ters, different effects, and different formulations of the same effect make results from

different mass formulas very different, particularly for nuclei far from stability. Figure

1.1 shows the difference between the mass data and the predicted values for different

mass formulas [14]. In the measured mass region, the difference is less than about 2

MeV, while in the unstable mass region, there can be 10 MeV mass difference between

models. High precision mass measurement is very important to test these different

mass models.

Figure 1.1: Comparison of mass model predictions. D. Lunney,
http://www.nndc.bnl.gov/amdc/web/th-gen.html.
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1.2 Weak interaction

Another motivation for precision mass measurement comes from weak interaction

studies. Quark eigenstates of the weak interaction are not the quark mass eigen-

states of the strong interaction, but are related by the Cabbibo-Kobayashi-Maskawa

matrix [15, 16]. 



dw

sw

bw





=





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





·





ds

ss

bs.





(1.8)

Unitarity of the Cabbibo-Kobayashi-Maskawa matrix requires

|Vud|2 + |Vus|2 + |Vub|2 = 1. (1.9)

The probability of the quark transition d↔ u is given by |Vud|2.

The theory of β-decay was first developed by Fermi in 1934 [17]. The decay

constant λ is the probability per unit time of a transition between quantum states,

and is given [18] by

λ =
2π

h̄
|Mfi|2

dN

dET
, (1.10)

with

Mfi =
∫

Ψ∗fHΨid
3r, (1.11)

where H is the Hamiltonian operator associated with the weak interaction, dN
dET

is the

density of available final states with the disintegration energy ET , and Ψi and Ψf are
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the wave functions of the initial and final states. The half-life time is

t1/2 =
ln 2

λ
, (1.12)

and the statistical rate function is given by

f(Z, ET ) =
1

m5
ec

10

∫ ET

0
F (Z, E)E(E2 −m2

ec
4)1/2(ET − E)2dE, (1.13)

A non-relativistic expression of the Fermi function is

F (Z, E) =
2πη

1− e−2πη
, (1.14)

where η = ±Ze2/h̄υe, the plus sign is valid for the electron, the minus sign is valid

for the positron, and υe is the electron velocity corresponding to electron energy E.

Generally, the ft-value which is the product of the statistical rate function f and

the half-life time t is given [19, 20] by

ft =
K

G2
V |MF |2

, (1.15)

where K/(h̄c)6 = 2π3h̄ln2/(mec2)5 = (8120.271 ± 0.012) × 10−10 GeV−4s, GV is the

vector coupling constant for semileptonic weak interactions, and MF is the Fermi

matrix element. If the effective interaction is isospin invariant, the Fermi matrix

element is given by

|MF | =< Ψf |T±|Ψi >=< T, Tz ± 1|T±|T, Tz >=
√

(T ∓ Tz)(T ± Tz + 1). (1.16)

For superallowed Fermi β decay between T = 1, Jπ = 0+ states, where J and π

designate the spin and parity of the initial (final) state, we can substitute T = 1
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and Tz = 1, 0, or −1 in Eq. 1.16, giving |MF | =
√

2. Generally, from Eq. 1.11, the

Hamiltonian operator H and the Ψi and Ψf are very complicated [21]. Isospin is not an

exact symmetry in nuclei, and |MF |2 = 2(1− δC), where δC is the isospin-symmetry-

breaking correction which arises from the Coulomb and charge-dependent part of

nuclear interaction Hamiltonian, the mixing among the 0+ state wave functions which

are connected with isospin in both the parent and daughter nuclei and small differences

in the single particle neutron and proton radial wave functions. The emitted electron

can emit a bremsstrahlung photon, in which case the statistical rate function f will be

replaced by f(1 + δR)(1 +)V
R), where δR and )V

R represent respectively the nucleus-

dependent radiative correction and the nucleus-independent radiative correction. A

“corrected” ft value is

Ft ≡ ft(1 + δR)(1− δC) =
K

2G2
V (1 +)V

R)
. (1.17)

GV = |Vud|GF | [20, 22], and GF is the Fermi coupling constant for purely leptonic

decay.

The statistical rate function f depends on the maximum energy of the electron,

which in turn depends on the total transition energy Q given by the mass measurement

(masses of emitters and its daughters). By combining accurate mass measurements

with half-life and branching ratio measurements, Vud can be determined and we can

test the standard model.
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1.3 Astrophysical capture processes

Because of lack of data such as reaction cross sections, and the masses, etc. for

exotic nuclei, it is hard to model astrophysical processes. It is believed that heavier

elements form in stars via proton or neutron capture reactions, and knowledge of

the proton or neutron separation energies can tell us how nucleosynthesis proceeds

along the proton and neutron drip lines. The neutron drip line or the proton drip

line is the line on the Z, N plane where the neutron separation energy or the proton

separation energy is zero. Mass measurements are very important to astrophysical

capture processes [23, 24]. The abundance can be calculated by

Yn+1

Yn
= ρn

Gn+1

2Gn
(
An+1

An

2πh̄2

mukT
)3/2exp(

Sn+1

kT
), (1.18)

where Yn, Yn+1, T , ρn, G, A, mu, k, S are respectively the abundances of an initial

and final nucleus of a single proton or neutron capture reaction in the chain, the

temperature, the proton or neutron density, the partition function, the mass number,

the atomic mass unit, the Boltzmann constant, and the proton or neutron separation

energy. The proton or neutron separation energy depends on the mass difference of

adjacent isotopes.

1.4 Production of nuclei

The Isotope Separator On-Line (ISOL) and in-flight methods can be used to produce

different nuclei. The ISOL method [25] uses a high energy beam of light ions to
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bombard a thick target of heavier elements, and the reaction products from spallation,

fission, and fragmentation processes are thermalized and transported by diffusion

processes to an ion source for ionization and accelerated to a few tens of keV. The

nuclei are separated by electromagnetic fields. The ISOL method is used at ISOLDE

at CERN and ISAC at TRIUMF. The in-flight method uses a heavy, high energy

beam to bombard a thin target, and nuclides are produced through fusion-evaporation

reactions. During the flight of the ions, the beam is separated by magnetic rigidity

selection and a velocity filter, etc., and a gas stop cell is used to reduce the beam

energy [26]. The in-flight method is used at GSI, ANL, RIKEN and the NSCL.

1.5 Experimental methods of mass measurement

The indirect method is to measure the Q-value. In a two-body reaction a(b, c)d, the

mass excesses are related by [27]

Q = ∆a + ∆b −∆c −∆d, (1.19)

where ∆a, ∆b, ∆c, and ∆d are the mass excesses for a, b, c, and d. If we know the mass

excesses of three of a, b, c, and d, and measure the Q-value by measuring the kinetic

energy, then the mass excess of the fourth one can be deduced. As an example of this

method, the only experimental value of the mass excess of 11Be used for the AME2003

atomic mass evaluation was determined from the 10Be(d,p)11Be reaction [28].

The direct method uses the relation between the magnetic rigidity and the ion

velocity or the cyclotron frequency to determine the mass of the ion; different methods
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are used at a few facilities.

Spectrometer SPEG at GANIL: Here, ion masses (A≤ 70) are measured accord-

ing to the relation

Bρ = γ
mυ

q
, (1.20)

where Bρ is the magnetic rigidity of the ion, m, q, υ and γ are respectively the mass ,

charge, velocity, and the Lorentz factor. υ can be measured by time of flight [29] and

once Bρ is determined, the mass can be obtained from Eq. 1.20. A mass resolution

of 2− 4× 10−4 was reached at SPEG.

Schottky mass spectrometry at GSI: Here, ion mass measurements have been per-

formed at the Experimental Storage Ring (ESR) [30]. The stored ions circulate in the

ESR with characteristic revolution frequencies and induce a mirror charge on electro-

static pick-up electrodes. The unknown mass of an ion is determined by comparing

to a known mass using

fi − fj

fi
= −αp ·

(m/q)i − (m/q)j

(m/q)i
+ (1− αpγ

2)
∆υ

υ
, (1.21)

where the revolution frequency fi is equal to υi/Ci, υi and Ci respectively are the

velocity and length of the closed orbit, the momentum compaction factor αp is equal

to dC/C/(d(Bρ)/(Bρ)), and Bρ is the magnetic rigidity; fi and fj are determined

from broad-band Schottky spectra recorded by the pick-up electrodes. The ESR

electron cooler provides a ∆υ
υ of ∼ 7 × 10−7, and the second term in Eq. 1.21 is

ignored. By comparing the results with reference ion measurements, the unknown
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mass can be determined with a relative precision of 10−6 [31].

Isochronous mass spectrometry at GSI: In Eq. 1.21, when αpγ2 is equal to 1, it

is the so-called isochronous mode. In this case, the second term is zero and electron

cooling is not needed to reduce δυ
υ . A special thin-foil detection system records each

passage of the stored ions, and the time of flight spectrum is analyzed by seeking a

series of equidistant peaks. In this way, the revolution frequency f = 1/T will be

found, and by comparing with the time of flight for reference ions, the unknown mass

may be determined with a relative precision of 2× 10−6 [32].

MISTRAL radio-frequency transmission spectrometer at CERN: The beam is in-

jected into the homogeneous magnetic field region, where it follows a two-turn helical

trajectory. At the end of the trajectory, the ions are recorded by a multiplier. Two

radio-frequency electric field modulators are located at the one-half and three-half

turn positions on the trajectory. Only when the modulation frequency fRF is equal

to (n + 1/2)fc (fc is the cyclotron frequency), the acceleration by one modulator will

cancel the deceleration by the other, and the ions can go through the 0.4-mm narrow

exit slit and be recorded by the multiplier. By making a wide modulation frequency

scan, the cyclotron frequency can be found from the fRF of the peak position, and the

mass of the ion can be determined to a relative precision of better than 1× 10−5 [33].

Penning trap: The radial energy of an ion in a Penning trap can be changed

by applying a radio-frequency electric field at ring electrodes for a certain time pe-

riod. When this radio-frequency is equal to the cyclotron frequency, the radial energy
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reaches a maximum. By measuring the time of flight after the ion is ejected from

the Penning trap under a wide radio-frequency scan, the minimum time of flight will

correspond to the maximum radial energy. So at the time of flight minimum, the

radio-frequency is equal to the cyclotron frequency, and the mass of the ion can be

determined (principle can be seen in Section 2.3).

Penning traps are used to measure the masses of isotopes; they exist at several

facilities [34, 35], some of them are discussed in more detail below.

ISOLTRAP: Penning trap spectrometer: ISOLTRAP at ISOLDE/CERN was the

first facility to use a Penning trap to measure the masses of short-lived radioactive

ions. A radio-frequency quadrupole trap captures the continuous 60 keV ISOLDE

beam. Cooled and bunched ions are then re-accelerated to about 1 keV and extracted

into a buffer-gas filled preparation Penning trap. Isobar separation is done by using

a mass selective buffer gas cooling technique [36] in which ions in the trap are excited

by different radio-frequency fields. Finally, the ions are injected into a precision

Penning trap for mass measurement. More than 200 masses have been measured by

ISOLTRAP; an accuracy of typically 10−7 [37] can be reached.

CPT at Argonne National Laboratory: Here, ions are thermalized with helium

gas in a gas catcher [38]. After passing through the RFQ ion guide region, bunched

ions are extracted to an isotope separator, which is a cylindrical Penning trap, and

then transfered to the Paul trap which is used for further ion cooling. Finally the

ions are injected into the precision Penning trap [39, 26]. Masses of isotopes such as
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68Ge, 68Se were measured by CPT; these masses of waiting-point nuclides are very

important to test models of the r-process. More than 60 radioactive isotopes with

half-lives as short as one second have been measured with the CPT. The relative

precision approaches 10−8.

LEBIT at NSCL at Michigan State University: A linear Paul trap system is used

as the ion accumulator and buncher after ions first pass a very large gas stopping cell

and RFQ ion-guide. Following the Paul trap system, the bunched beam of low energy

and low emittance is injected into a Penning trap [40, 41]. Masses of isotopes such as

38Ca, 65Ge, 66As, 67As, 68Se, 83Kr, 84Kr were measured by LEBIT; a relative precision

of about 10−8 can be reached [42, 43].

SMILETRAP at Stockholm: Because the relative precision depends on the charge

of the ion, the relative precision of mass measurements can be improved by using

highly charged ions. In SMILETRAP, stable highly charged ions are produced in

the electron beam ion source CRYSIS in a similar way to the electron beam ion trap

(details in Section 2.2), ions are injected into a pre-trap [44, 45]. The pre-trap is biased

to CRYSIS potential, then, after ions are loaded, the biased voltage of the pre-trap is

lowered to ground so that the energy of the highly charged ions can be reduced before

the ions are injected into a precision Penning trap. The relative precision which can

be reached is 1.5× 10−9 [46].
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1.6 Outline of the thesis

In my thesis, I shall first introduce the TITAN system and some subsystems in detail

in Chapter 2; then I shall introduce the cooling techniques and electron-ion recom-

bination in Chapter 3; I shall show a method to design the potential for the cooler

trap, some results for the injection of protons, highly charged ion, and electrons, and

a cooler trap implementation in Chapter 4; finally I shall show the result of mass

measurements of the halo nucleus beryllium-11 at TRIUMF in Chapter 5.
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Chapter 2

THE TITAN SYSTEM AT TRIUMF

The ISAC (Isotope Separator and Accelerator) facility at TRIUMF is one of the

world’s most powerful radioactive beam facilities. It uses the 500 MeV, up to 100

µA proton beam which is produced by the TRIUMF cyclotron to bombard a thick

target using the ISOL technique to produce radioactive isotopes [47, 48] in record

quantities. The reaction products diffuse out of the hot target, and they are ionized

and accelerated as a continuous beam. A dipolar magnet separator [49] is used to

separate the ions; the typical resolving power is 3000. The maximum beam energy

is 60 keV and the beam emittance is about 50 π mm mrad. ISAC is one of the best

places for an on-line mass measurement facility, and the TITAN project has been

initiated for this purpose. TITAN encompasses new features not found at existing

trap-based mass measurement setups; the most important one is the ability to use

highly charged ions to carry out mass measurements. The mass measurement in a

Penning trap is essentially the measurement of the cyclotron frequency in a known,

constant magnetic field. Highly charged ions yield higher cyclotron frequencies and

can increase the precision of the mass determination or alternatively, speed up the

measurement. The relative precision [50] in mass measurement using a Penning trap
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depends on the charge of the highly charged ion as shown by

δm

m
≈ m

TrfqB
√

N
, (2.1)

where N is the number of ions recorded, Trf is the quadrupolar excitation time, and

q is the charge of the ion. Making the mass measurement using highly charged ions

can improve the precision of the mass measurement. TITAN is used to measure the

mass of short-lived isotopes with half-lives of about 50 ms, and a relative precision of

10−8 can be reached.

Figure 2.1: TITAN setup.



17

Figure 2.1 shows the TITAN system: It consists of a radio-frequency quadrupole

(RFQ), electron beam ion trap (EBIT), cooler trap, Wien filter, and Penning trap.

The ISAC beam is a continuous beam. A radio-frequency quadrupole is used to cool

and bunch the continuous ion beam, and the cooled and bunched ions are then injected

into an EBIT. It breeds singly charged ions into highly charged ions within a few ms

to tens of ms. Unfortunately, the HCI extracted from the EBIT will most likely have

too large an energy spread for direct injection into the mass measurement trap. For

this reason, we are developing a cooler trap in which the ion energy spread which is

much more than 1 eV/q can be reduced to about 1 eV/q. A Wien filter is used for

selecting one charge state, because different charge states of ions exist when ions are

extracted from the EBIT. Finally, the ions with low energy spread are injected into

the precision Penning trap for precision mass measurement. In the following sections,

the individual components of TITAN are introduced in more detail.

2.1 Radio-frequency quadrupole

The RFQ is used to reduce the emittance of the ISAC beam. Ions are trapped in

the radial direction by applying radio-frequency signals at the cylindrical quadrants

shown in Figure 2.2. Ions are trapped in the longitudinal direction by applying DC

voltages at different electrodes along the longitudinal direction, resulting in the axial

potential shown in Figure. 2.3. The RFQ is filled with helium buffer gas at a gas

pressure of about 2.5×10−2 mbar. The buffer gas cools the ions (see the details about
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buffer gas cooling in section 3.1.3), which reduces the beam emittance. The cooling

time is about 600 µs. Finally, cooled ions are trapped in a small, deep potential

region. By applying a kicking voltage at the last electrode of the RFQ, the trapped

ions are ejected as a cold, bunched ion beam.

The RFQ [51] for TITAN is 700 mm long and consists of 24 segmented cylindrical

quadrants with r0 = 10 mm, where r0 is the the minimum distance from the center

of the RFQ to the cylindrical quadrants. Cylindrical quadrants of radius 1.148 r0

replace the ideal hyperbolic quadrants shown in the Figure 2.2.

Figure 2.2: RFQ electrode.

Figure 2.2 shows a positive bias applied to one pair of electrodes and a negative
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Figure 2.3: RFQ longitudinal potential. Courtesy of M. Smith, TITAN collaboration.

bias to the other pair,

U =
U0 − V0 cos ωt

2
. (2.2)

The radial potential is

Φ(x, y) = [U0 − V0 cos(ωt)]
(x2 − y2)

2r2
0

, (2.3)

the radial electric field is

,E = −∇Φ(x, y). (2.4)

From Eq. 2.3 and Eq. 2.4, Newton’s equation of radial motion for an ion with charge

q and mass m is given by

m,̈r = −q[U0 − V0 cos(ωt)]
xx̂− yŷ

r2
0

, (2.5)
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with ,r = xx̂ + yŷ, Eq. 2.5 can be replaced by

ẍ = − q

m

[U0 − V0 cos(ωt)]

r2
0

x (2.6)

and

ÿ =
q

m

[U0 − V0 cos(ωt)]

r2
0

y. (2.7)

By setting

a =
4

ω2r2
0

(
q

m
)U0, (2.8)

b =
2

ω2r2
0

(
q

m
)V0 (2.9)

and

ζ =
ωt

2
, (2.10)

Eq. 2.6 and Eq. 2.7 become

d2x

d2ζ
+ (a− 2b cos 2ζ)x = 0, (2.11)

and

d2y

d2ζ
+ (−a + 2b cos 2ζ)y = 0. (2.12)

Eq. 2.11 and Eq. 2.12 have the form of a Mathieu equation. The general Mathieu

equation (with parameters az, qz typically used in the literature) is

d2u

d2ζ
+ (az − 2qz cos 2ζ)u = 0. (2.13)

Solutions of Eq. 2.13 [52] have az and qz which satisfy the relation
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β =

√

az +
q2
z

2
, (2.14)

where β has a value from 0 to 1 for practical RFQ implementations. When β is varied

in the range from 0 to 1, then, for x to be stable, according to the Eq. 2.14, a and

b will be limited to a certain valid region (included by the two red dashed curves

in Figure 2.4). For y to be stable, a and b are constrained to another valid region

(included by the two black curves). In the overlapping region shown in Figure 2.4

both x and y are stable, so if the frequency of the signal applied at the RFQ and its

amplitude are selected correctly so that a and b fall in the overlapping region, then,

ions can stably move in the RFQ; otherwise, they will be lost. When both x and y

are stable, it means the ions are trapped in the radial direction. Because a and b

depend on the mass of the ion, applying different frequencies of signals, certain kinds

of ions can be trapped, while others are lost. The RFQ can therefore be used for mass

separation.

Normally, ferrite core transformers are used to split the phase of sinusoidal RF

signals which are applied to the electrodes of the RFQ. Because of the limited fre-

quency range of such a system, a square-wave-driven system using digital circuitry

is chosen for the RFQ at the TITAN facility. An amplitude of 400 Vpp at up to 1

MHz is reached by the square-wave-generator. Using a similar calculation method

(see details in reference [51]) as above, for a square-wave-driven system, b, which is

equal to 2
ω2r2

0
( q

m)V0, should be less than 0.712; ω and V0 are respectively the frequency
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Figure 2.4: a− b stability region for the RFQ.

and amplitude of the square-wave RF signal here. An emittance of 8π mm mrad for

the extracted beam from the RFQ has been observed [53]; the typical extracted beam

energy is 1 keV. The RFQ built at TRIUMF is shown in Figure 2.5.

2.2 Electron beam ion trap

The electron beam ion trap (EBIT) [54, 55, 56] is a device used to create highly

charged ions. It uses a combination of electrostatic fields and magnetic fields to confine

the ions in three dimensions. Ions interact with the intense electron beam and can be

stripped of one or more electrons by electron impact ionization. Highly charged ions

can be produced by a stepwise ionization. Figure 2.6 shows the principles of an EBIT.
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Figure 2.5: RFQ built at TRIUMF.

In the electron gun, the barium oxide cathode is heated to a high temperature (≈ 1300

K) and emits electrons. The focus electrode, anode, and negative floating voltage

guide the electrons to the central trap region. The electrons follow the magnetic field

lines. By placing the electron gun in a weak magnetic field region and the trapping

region in a high field location, the electron beam is radially strongly compressed.

Trim coils and bucking coils create a compensating magnetic field at the electron

gun, which cancels the residual magnetic field generated by the Helmholtz coils (two

identical circular magnetic coils which are placed symmetrically on two sides along

the axis and separated by a distance which is equal to the radius of the coil) which

supply the homogeneous magnetic field for the EBIT central trap region. The radial
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Figure 2.6: The principle of the EBIT. Courtesy of Hjalmar Bruhns.

electron distribution is Gaussian, and the radius (80% electrons contained) [57] is

given by

re = rB{
1

2
+

1

2
[1 + 4(

8mkTcr2
c

e2B2r4
B

+
B2

c r
4
c

B2r4
B

)]1/2}1/2 (2.15)

where rB is the Brillouin radius, given by

rB = (
2m3

π2ε2
0e2

)1/4 I1/2
e

BE1/4
e

, (2.16)

where m is the electron mass, e is the electron charge, B is the axial homogeneous

magnetic field, Bc is the magnetic field at the cathode, rc and Tc are respectively the

radius and temperature of the cathode, Ie is the electron beam current, and Ee is the

electron energy. The electrons are finally collected by the collector.
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The processes which control the ion number balance in the EBIT are (i) electron-

impact ionization, (ii) radiative recombination, (iii) charge exchange, and (iv) radial

and axial ion escape from the trap. The differential equation [58] of the density ni

for charge states i is given by

dni

dt
= neυe[σ

ion
i−1→ini−1 − (σion

i→i+1 + σRR
i→i−1)ni + σRR

i+1→ini+1]

−n0υion[σchex
i→i−1ni − σchex

i+1→ini+1]− νcoll
i

exp{− ieUw
kTion

}
ieUw
kTion

ni, (2.17)

where ne is the density of the electrons, υe is the velocity of the electron, n0 is the

neutral gas density, υion is the average thermal ion velocity, σ is the cross-section for

different reaction processes (impact ionization, radiative recombination, and charge

exchange), νcoll
i is the collision rate for all Coulomb collisions of ions which have charge

i, Uw is the depth of the electrostatic potential well, and kTion is the thermal energy

of the Coulomb-heated ions.

The electron-impact ionization process is

Aq+ + e− → A(q+1)+ + e− + e−. (2.18)

The ion loses an electron and the charge state increases by 1. The electron-impact

ionization cross-section [59, 60, 61] is given by

σi→i+1 =
∑

j=1

aijqij

EePij
ln

Ee

Pij
{1− bijexp[−cij(Ee/Pij − 1)]}, (2.19)

where j is summed over all nl subshells, Ee is the impact electron energy, Pij is the

ionization energy of the jth nl subshell, qij is the number of electrons in the jth nl

subshell, and aij, bij, cij are parameters.
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The charge exchange process arises from the interaction of ions and neutral gas.

The reaction process for one-electron transfer is

Aq+ + B → A(q−1)+ + B1+. (2.20)

The charge exchange cross-section [62] (in cm2 at collision energy below 25 keV/amu)

is given by

σi→i−1 = 1.43× 10−12Z1.17
i P−2.76

0 , (2.21)

where Zi is the ion charge number, P0 is the ionization potential (in eV) of the neutral

gas. The charge exchange process for the multiple electron transfer is

Aq+ + B → A(q−r)+ + Br+ → A(q−p)+ + Br+ + (r − p)e−, (2.22)

where r is the number of electrons used for charge exchange, and p is the number

of electrons retained by the ion. The charge exchange cross-section [63] (in cm2) for

multiple electron transfer can be approximated for slow collisions (this expression is

valid for collision velocities below roughly 0.2 a.u.) as

σi→i−r = (2.7× 10−13)Zir/[I
2
1I

2
r

N∑

j=1

(j/I2
j )], (2.23)

where the ionization potential I is in units of eV, and N is the number of outer-shell

electrons.

Figure 2.7 shows how a 25 keV electron beam moving from the right to the left

(from low to high magnetic field) can be compressed by the strong magnetic field

(SIMION simulation results, using the magnetic field which is shown in Figure 2.12).
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Figure 2.7: Magnetic compression of an electron beam in a magnetic field (space-
charge effects are not included).

The TITAN electron beam ion trap was designed and constructed at the Max-

Planck-Institute for Nuclear Physics (MSc thesis, M. Froese, University of Manitoba,

2006 [64]). The design electron current is 5 A, the electron beam energy is 60 keV,

and most ions can be bred into He-like ions with a charge breeding time of tens of

ms. Using 27 keV, up to 500 mA electron beam, charge states as high as Kr34+ and

Ba54+ have been reached for TITAN EBIT, which is shown in Figure 2.8.

Figure 2.8: The EBIT constructed at the Max-Planck-Institute for Nuclear Physics.
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2.3 Penning trap

Penning traps have become very accurate tools for mass measurements both on stable

and unstable isotopes. The Penning trap is a device that traps charged particles by

using static electric and magnetic fields [65, 36].

2.3.1 Penning theory

A hyperbolic Penning trap is shown in Figure 2.9. It consists of a ring electrode

and two endcap electrodes. The ring electrode is created by the hyperbola of revolu-

tion [65]

z2 =
1

2
(x2 + y2 − r2

0), (2.24)

and the two endcap electrodes are created by the branches of the hyperbola of revo-

lution

z2 = z2
0 +

x2 + y2

2
, (2.25)

where r0 is the minimum radial distance from the center of the trap to the ring

electrode, and z0 is the minimum axial distance from the center of the trap to the

endcap electrodes.

The cylindrical Penning trap shown in Figure 2.10 consists of the cylindrical ring

electrode, cylindrical compensation electrodes and cylindrical endcap electrodes.

The hyperbolic potential in Figure 2.9 has the form

U(x, y, z) =
U0(2z2 − x2 − y2)

4d2
, (2.26)
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Figure 2.9: Hyperbolic Penning trap.

Figure 2.10: Cylindrical Penning trap.
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where

d2 =
1

2
· (z2

0 +
r2
0

2
). (2.27)

From Eq. 2.26, the electric field in the trap is

,E(x, y, z) = −,∇U(x, y, z) =
U0

2d2
(xx̂ + yŷ − 2zẑ). (2.28)

The magnetic field

,B = Bẑ, (2.29)

and the ion position is

,r = xx̂ + yŷ + zẑ. (2.30)

The ion motions in the magnetic field and electric field is given by

m,̈r = q( ,E + ,̇r × ,B). (2.31)

By setting

ωz =

√
qU0

md2
ωc =

qB

m
, (2.32)

Eq. 2.31 can be replaced by the following three equations

ẍ− ω2
z

2
x− ωcẏ = 0, (2.33)

ÿ − ω2
z

2
y − ωc(−ẋ) = 0, (2.34)

z̈ − ω2
z

2
(−2z) = 0. (2.35)

The solution of Eq. 2.35 is

z = Az cos(ωzt− φz). (2.36)
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It means the axial motion is a harmonic oscillation, with amplitude Az and phase φz

determined by the initial axial position and velocity. By setting u=x+yi, the radial

equations 2.33 and 2.34 become

ü− ωcu̇i− ω2
z

2
u = 0. (2.37)

Setting

u = e−iωt, (2.38)

the characteristic frequencies ω± can be obtained:

ω± =
1

2
(ωc ±

√
ω2

c − 2ω2
z). (2.39)

The solution of Eq. 2.37 is

u = A+e−iω+t + A−e−iω−t, (2.40)

which yields the solutions for x and y:

x = R− cos(ω−t− φ−) + R+ cos(ω+t− φ+) (2.41)

y = −R− sin(ω−t− φ−)−R+ sin(ω+t− φ+) (2.42)

Where R− is called the radius of the magnetron motion, and R+ is called the radius

of the reduced cyclotron motion.

2.3.2 Quadrupole excitation

The oscillating azimuthal quadrupole potential [36, 66] is created via a four-segmented

ring electrode shown in Figure 2.11; +U is applied at one pair of the four-segmented
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Figure 2.11: Hyperbolic Penning trap; the ring electrode is cut into four segments.

ring electrodes, and −U is applied at another pair of the four-segmented ring elec-

trodes. The RF signal U is

U = Vrfcos(ωqt− φq). (2.43)

Vrf , ωq and φq are the amplitude, the frequency and the phase of the RF field. The

quadrupole potential inside the trap is

φq = −Vrf

2a2
cos(ωqt− φq)(xy), (2.44)

then the quadrupole field is given by

,E =
Vrf

2a2
cos(ωqt− φq)(xx̂ + yŷ). (2.45)

By adding an RF azimuthal quadrupole field, similar to Eq. 2.33 and Eq. 2.34, the

ion motion equations become

ẍ− ω2
z

2
[x +

Vrf

2a2
cos(ωqt− φq)y]− ωcẏ = 0, (2.46)
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and

ÿ − ω2
z

2
[y +

Vrf

2a2
cos(ωqt− φq)x]− ωc(−ẋ) = 0. (2.47)

Solving the equations 2.46 and 2.47, we obtain [36]

x = R−(t) cos(ω−t− φ−) + R+(t) cos(ω+t− φ+), (2.48)

and

y = −R−(t) sin(ω−t− φ−)−R+(t) sin(ω+t− φ+), (2.49)

where

R±(t) = {R±(0) cos(ωBt)∓ 1

2

R±(0)[i(ωrf − ωc)] + R∓(0)k±0
ωB

× sin(ωBt)}ei 1
2 (ωrf−ωc)t,

(2.50)

ωB =
1

2

√
(ωrf − ωc)2 + k2

0, (2.51)

k±0 = k0e
±i%φ, (2.52)

k0 =
Vrf

2a2

q

m

1

ω+ − ω−
, (2.53)

)φ = ϕ− (ϕ+ + ϕ−), (2.54)

ϕrf , ϕ+ and ϕ− are the phases of the r.f. field and the two radial motions. The radial

energy can be given by

Er =
1

2
m[(R+ω+)2 + (R−ω−)2], (2.55)

and with ω+ $ ω−, Eq. 2.55 can be replaced by

Er ≈
1

2
m[(R+ω+)2]. (2.56)
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From 2.50 and 2.56, for the special case R+(0) = 0, the radial energy can be given by

Er ≈
1

4
mR2

−(0)k2
0

sin2(ωBt)

ω2
B

. (2.57)

2.3.3 Time of flight

Figure 2.12 shows axial Bz and radial Br field components of the 4T magnet for the

precision Penning trap at an off-axis distance of 0.5 cm. The origin is located at

the magnet center. After quadrupole excitation, when letting ions out of the Penning

trap, the ions are accelerated by an axial force arising from the magnetic field gradient.

From Appendix A, the force F depends on the radial energy Er and magnetic field

gradient ∂B
∂z , and is given by

F = −Er

B

∂B

∂z
ẑ. (2.58)

From Eq. 2.58 and Eq. 2.57, if changing the RF signal frequency ωrf at the ring

electrodes of the Penning trap, the radial energy Er will be changed. If Er reaches a

maximum, then the axial force reaches a maximum too. With Eq. 2.58 and Eq. 2.57,

by solving Eq. 2.59

∂F

∂ωrf
= 0, (2.59)

ωrf = ωc can be obtained. This means that Er reaches a maximum only when ωrf is

equal to ωc. From Eq. 2.32, we can know the ion mass if we make the radial energy

a maximum after quadrupole excitation. How do we know when ωrf = ωc? We can
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measure the time of flight,

TOF (ωrf ) =
∫ zdetector

z=0

√
m

2(E0 − q · V (z)− Er
B · B(z))

dz, (2.60)

where E0 is the ion energy after quadrupole excitation, zdetector is the detector distance

from the Penning trap center, V (z) is the axial potential, B is the magnetic field at

the center of Penning trap, and B(z) is the axial magnetic field, which changes with

the position. When the time of flight is a minimum, we know the axial force on the ion

is a maximum, and the RF signal frequency ωrf must be equal to ωc. Also, from Eq.

2.57, Er is maximized when sin2(ωBTrf ) = 1. On resonance ωB = k0
2 and therefore

Trf = π
k0

. Hence, via k0, the optimum duration of the RF signal depends on the RF

amplitude.

From the above, by means of a Penning trap and measuring the ion flight time,

ion mass measurement is possible.

2.4 Simulation for time of flight

SIMION [67] is a very useful software; using it, we can simulate the same procedure

that is used in a real measurement. The ion moves in an electric field and mag-

netic field, and SIMION calculates the ion trajectory by a fourth-order Runge-Kutta

method (see Chapter 4). The result strongly depends on the time step. Only if we

choose sufficiently small time steps, will the result correctly describe the experiment.

The system is set up as shown in Figure 2.13; the dimensions are shown in Appendix

B. DC voltages at the four ring electrodes of the Penning trap are the same and are



36

0

50

100

150

200

250

300

350

400

450

500

550

600

0 500 1000 1500 2000 2500 3000

0

10000

20000

30000

40000

Z (mm)

 Axial Bz
 Radial Br

B
z (G

au
ss

)

B
r (G

au
ss

)

Figure 2.12: Axial magnetic field Bz at an off-axis distance of 0 mm and radial
magnetic field Br for the precision Penning trap at an off-axis distance of 5 mm. The
origin is located at the magnet center.

set to -0.78 V; the two endcap electrodes of the Penning trap are set to 1 V; the elec-

trodes next to the Penning trap are respectively set to -40 V, -2 V, -1000 V, -100 V,

-1000 V, -2150 V. Initially, 68Ge+ is stopped at the trap center, then a dipolar signal

is applied at the ring electrodes for 700 µs, so that ion can move out of the center of

the trap. Next, a quadrupolar signal is applied at the ring electrodes for 400 ms; the

amplitudes of dipolar and quadrupolar are set to 0.8 V and 0.025 V, the time of flight

is recorded at axial position 738 mm when the ion passes this position finally, and

the same process is repeated. The frequency of the quadrupolar signal is changed by
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Figure 2.13: The system for time of flight.

a .PRG program shown in Appendix C. Figure 2.14 shows that the frequency where

the time of flight is a minimum, is roughly 5681616.287 which is equal to ωc in a 4

Tesla magnetic field. SIMION is a good tool for studying the Penning trap, but the

correct time step is important; short time steps make the simulation time very long,

whereas large time steps make the results inaccurate.

2.5 Current status of TITAN

In August 2007, TITAN got first beam from ISAC. Currently, the RFQ, the precision

Penning trap for mass measurement, and the ion transport lines between them are

fully operational and permit the measurement of singly charged ions. First results

include the mass determination in a series of light radioactive nuclei such as 8He,

11Li and 11Be, also referred to as ’halo nuclei’ which have received a lot of attention

recently. The EBIT has been installed on the TITAN platform, but is currently under

repair. The cooler trap described in this thesis is entering the construction phase in

summer 2008.
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Figure 2.14: Time of flight from SIMION.
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Chapter 3

COOLING TECHNIQUES AND ELECTRON-ION

RECOMBINATION

There are numerous beneficial effects [68, 69] brought about from cooling of ions.

First, losses of ions can be reduced and ions can be trapped in an ion trap for a

long time; second, ions can be localized near the center of the trap, both of which

increase the precision of measurements of ion masses; and finally, the Doppler shifts

can be reduced in optical and γ-ray spectroscopy where the transition is broadened by

Doppler shifts related to the ion velocity. Highly charged ions should be cooled down

before they enter the Penning trap. There are a few methods to cool ions, but the

charge state of highly charged ions must not be changed during the cooling process.

Some of the following methods can be used to cool highly charged ions from an EBIT;

some of them are not suitable for our purposes.
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3.1 Cooling methods

3.1.1 Resistive cooling

For this technique, an external tuned circuit is connected to the trap electrodes. By

inducing electric currents in the external circuit, the moving ions dissipate energy.

The induced current is given by i = B1qvz/2z0, where q is the ion charge, vz the

ion velocity, and z0 the half separation between the electrodes. For hyperboloidal

Penning trap electrodes, B1 = 0.8 [70, 71]. For parallel plate electrodes, B1 = 1. The

average rate of ion energy change [72, 68] can be written as

dWz

dt
= −〈i2Reff〉 = −B2

1q
2ReffWz

4mz2
0

, (3.1)

where Wz is the total energy of the ion, m is the ion mass, and Reff is the on-resonance

impedance for the LC circuit, given by

Reff = Q/(ωzC), (3.2)

where Q is the quality factor of the tuned circuit, and ωz is the ion oscillation fre-

quency. From Eqns. 3.1 and 3.2, the average rate of ion energy change is given

by

dWz

dt
= Wz(0)e−

t
τ , (3.3)

where

τ =
4mz2

0

B2
1q2Reff

=
4mz2

0ωzC

B2
1q2Q

. (3.4)
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Eqns. 3.3 and 3.4 show that resistive cooling is most effective for ions with high

charge-to-mass ratios, high Q and small Z0. A sufficiently high tuned circuit quality

factor can only be achieved in a cryogenic environment (4.2 K) and results in narrow

resonances. Hence this method is problematic for a broad-band cooler device (i.e. that

cools HCIs with a large range of q/m) in a room-temperature vacuum environment.

3.1.2 Evaporative cooling

In an electron ion beam trap (EBIT), the ions are heated by the intense electron beam,

and the ion energy rapidly increases. If the ions are not cooled in some way, they

will boil out of the trap before they reach the desired high charge state. Evaporative

cooling can be used to prevent this loss. If we inject low-Z ions along with higher-

Z ones, they are all trapped in the EBIT, collide with the hot electrons, and reach

essentially the same energy. If the axial kinetic energy of an ion is more than the

axial potential barrier qVwell, the ion will evaporate from the EBIT. The low-Z ions

tend to be fully stripped, but since they are low Z, the axial potential barrier, which

is proportional to the charge, is lower for them, so the low-Z ions escape from the

EBIT before the heavier ions reach a high charge state. The equilibrium trapped-ion

temperature [73] is given by

Ti ≈ 0.1qVwell, (3.5)

where Ti is the ion temperature in energy units. Each ion which escapes through

the axial potential barrier removes an energy qVwell, which is much larger than the
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average thermal energy shown in Eq. 3.5. From the general relation of energy and

temperature, W = 3
2NikTi, we see that the new temperature is lower than before.

The thermal energy removed by evaporation of the light, weakly trapped ions per-

mits the heavy, highly charged ions to remain trapped. Evaporative cooling in the

TITAN EBIT still needs to be investigated thoroughly and has the potential to make

a significant contribution to the cooling process.

3.1.3 Buffer gas cooling

Ions interact with the buffer gas, transfer energy to the buffer gas by collision, and

finally reach thermal equilibrium with the buffer gas. In practice, the interaction of

ion and gas is very complicated. The interactions may be described by long-range,

short-range and intermediate-range potentials. The long-range potential consists of

a polarization potential, dispersion potential and electrostatic potential. The polar-

ization potential arises from the interaction between the ions and the multipole mo-

ments induced in the gas by the ions. The dominant long-range potential is usually

the ion-induced dipole potential which is proportional to r−4. Electron fluctuations

give rise to transient multipole moments which induce in-phase transient moments in

another molecule or ion; the dispersion potential rises from the electrostatic interac-

tions between these two sets of moments. The electrostatic potential arises from the

interactions between the charge of the ion and the permanent multipole moments of

the gas or the interactions between the permanent multipole moments of the ion and
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the permanent multipole moments of the gas. The short-range potential comes from

the electronic charge clouds of an ion and an atom or molecule overlapping at short

range. The intermediate-range potential includes both of the above, the potential

arising from the effects of both Coulombic interaction and the overlapping electron

clouds. The interaction potential form [74] is given by

V (r) =
nε0

n (3 + γ)− 12 (1 + γ)

[
12

n
(1 + γ)

(
rm

r

)n

− 4γ
(

rm

r

)6

− 3 (1− γ)
(

rm

r

)4
]

,

(3.6)

where n, γ, ε0, and rm are the parameters. This potential is called the (n, 6, 4) ion-

neutral potential [75]. The parameters depend on the kind of gas and ion. The

r−n term represents the short-range repulsion of the interaction between an ion and

an atom or molecule. The r−6 term and r−4 represent the attractive long-range

interaction.

Buffer gas cooling is used in the radio frequency quadrupole [76, 77, 78, 79].

,Vd = K ,E (3.7)

where Vd is the drift velocity of an ion in a gas, and K is the mobility. K is given by

K =
q

N

(
1

3µkTeff

)1/2
1

QD (Teff)
, (3.8)

where µ = mM/(m + M), and

3

2
kTeff =

3

2
kT +

1

2
MV 2

d , (3.9)
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where M is the mass of the gas, m is the mass of the ion, and T is the temperature

of gas. The one-temperature theory [74] gives

QD(Teff) =
1

2
(kTeff)−3

∫ ∞

0

∫ π

0
2π(1− cosθ)be(−ε/kTeff)ε2dbdε, (3.10)

where b is the impact parameter, and

ε =
1

2
µυ2

r , (3.11)

where υr is the relative velocity, θ is given by

θ = π − 2b
∫ ∞

r0

[

1− b2

r2
− V (r)

ε

]−1/2
dr

r2
, (3.12)

where V (r) is the interaction potential given by Eq. 3.6, and r0 is the distance of

closest approach; it is given by

1− b2

r2
0

− V (r0)

ε
= 0. (3.13)

From the above equations, given a specific condition, the mobility can be calculated.

Normally, the parameters can be obtained from experiment.

Viscous damping models can provide a simple description of neutral ion interac-

tions. When the ion velocity is low, the damping force between the ion and buffer gas

is simply given by Stokes’ law, the damping force being proportional to the ion ve-

locity. If the ion velocity is high, the relationship is more complicated. The damping

force for low ion velocity is given by

,Fd = −δ · m · ,υ, (3.14)
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where m and υ are the mass and the velocity of the ion, and the damping coefficient

is given by

δ =
q

m
· 1

K0
· p/p0

T/T0
, (3.15)

where q is the charge of ion, and p and T are the pressure and temperature of gas

respectively; p0 and T0 are respectively the pressure and temperature of the gas for

the standard reference conditions, p0 = 1 bar, and T0 = 297 K. K0 is the reduced ion

mobility, which is the mobility of the ions for standard temperature T0 and pressure

p0.

When cooling highly charged ions using a buffer gas, the charge state of the highly

charged ions will be changed, so buffer gas cooling can usually not be used for this

purpose, but is widely and successfully used with singly charged ions.

3.1.4 Laser cooling

For laser cooling [80, 81], the laser is tuned to a frequency slightly below an electronic

transition in the atom. Because of the Doppler effect, for atoms moving in the direc-

tion opposite to the laser beam, the frequency of the laser is shifted into resonance

with the transition, and the atoms absorb photons and lose momentum equal to the

momentum of the photons. Furthermore, because the excited atoms emit photons in

a random direction, there is no net momentum transfer from the de-excitation when

averaged over many excitation cycles. The net result is that the atoms lose energy

by absorbing photons but don’t increase energy by reemitting the photons, so the
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hot atoms cool down. The lowest achievable temperature of the atom is given by the

Doppler cooling limit [82, 83],

TD = h̄γ/2kB, (3.16)

where γ−1 is the radiative lifetime of the laser cooling transition, h̄ is constant, and

kB is Boltzmann’s constant.

Laser cooling is very effective; the cooling temperature which can be reached is

much less than 1 K. Direct laser cooling of an ion species requires a suitable electronic

level structure and the required laser wavelengths are highly element-specific, ruling

this method out as a general-purpose HCI cooling technique. However, sympathetic

cooling of arbitrary species with laser-cooled Li, Be, Mg, or Ca ions can be envisioned.

It would apply to cooling HCI to energies significantly below the goal of the present

setup, and would still rely on pre-cooling via electrons as discussed below.

3.1.5 Sympathetic cooling

Sympathetic cooling is a method whereby cold electrons, protons or other ions undergo

energy-exchanging collisions with hot ions.

Proton cooling

Because of binary collisions between cold protons and ions, the ions lose energy. The

rate of energy loss has been studied by many groups [84, 85, 86, 87, 88]. When one

proton collides with an ion with collision cross section σ, the energy exchange of the
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elastic Coulomb collision is δE(V, W ), where W is the proton velocity, and V is the ion

velocity. Considering the proton velocity distribution f(W ) (normally a Maxwellian

distribution) corresponding to a proton temperature Tp, the energy exchange is given

by

dE =
∫

δEσ(|V −W |)f(W )dWdt. (3.17)

Using the relation between energy and temperature, E = 3
2kT , the time evolution of

the ion and proton energies in a simple model [84, 87, 88] are given by

d

dt
Ti = − 1

τi
(Ti − Tp)

d

dt
Tp =

1

τi

Ni

Np
(Ti − Tp)

τi =
3(4πε0)2mpmic3

8
√

2πnpZ2e4ln(Λ)
(
kBTi

mic2
+

kBTp

mpc2
)

3
2

ln(Λ) = ln(4π(
ε0kB

e2
)

3
2

1

Z

√
Tp

np
(Tp +

mp

mi
Ti + 2

√
mp

mi

√
TpTi)), (3.18)

where Ti, mi, Z, and Ni are respectively ion temperature, ion mass, ion charge, and the

number of ions, and Tp, np, mp, and Np are respectively proton temperature, proton

density, proton mass, and number of protons. Note that this simple model ignores

the influence of the magnetic field on the collision dynamics. With the magnetic field

included, no analytic expression is available, instead extensive numerical simulations

need to be employed [89]. The validity of our approach is discussed further at the

end of this chapter.

With the initial conditions shown in Table 3.1, Figure 3.1 shows the energy evo-

lution of various highly charged ions during the proton−HCI cooling process. The
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Table 3.1: Initial conditions for the energy evolution of various highly charged ions
during the proton−HCI cooling process.

proton density (cm−3) 108

proton number 108

initial proton temperature (eV) 1

number of HCI 103

initial energy of HCI (eV/q) 500
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Figure 3.1: Energy evolution of vari-
ous highly charged ions (HCI) during the
proton−HCI cooling process.
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Figure 3.2: Energy evolution of protons
during the proton−HCI cooling process.
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cooling time is about 0.15 s - 2.3 s, depending on the ion species. Figure 3.2 shows

the energy evolution of protons during the proton−HCI cooling process. By energy

conservation, if ions lose energy the protons gain energy.

Table 3.2: Initial conditions for the energy dependence of Kr36+ on the ratio of the
number of HCI (Ni) to the number of protons (Np).

proton density (cm−3) 108

proton number 108

initial proton temperature (eV) 1

initial energy of Kr36+ (eV/q) 500
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Figure 3.3: Energy dependence of Kr36+

on the ratio of the number of HCI (Ni)
to the number of protons (Np).
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Figure 3.4: Energy dependence of pro-
tons on the ratio of the number of HCI
(Ni) to the number of protons (Np).

With the initial conditions shown in Table 3.2, Figure 3.3 shows the energy de-

pendence of Kr36+ on the ratio of the number of HCI (Ni) to the number of protons
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(Np). Figure 3.4 shows the energy dependence of protons on the ratio of the number

of HCI (Ni) to the number of protons (Np). The cooling time is about 0.4 s - 0.5 s,

depending on the ion number.

Table 3.3: Initial conditions for the energy evolution of Kr36+ with different proton
density and proton numbers during the proton−Kr36+ cooling process.

number of Kr36+ 103

initial proton temperature (eV) 1

initial energy of Kr36+ (eV/q) 500
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Figure 3.5: Energy evolution of Kr36+

with different proton density and proton
numbers during the proton−Kr36+ cool-
ing process.
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Figure 3.6: Energy evolution of protons
with different proton density and proton
numbers during the proton−Kr36+ cool-
ing process.

With the initial conditions shown in Table 3.3, Figure 3.5 shows the energy

evolution of Kr36+ with different proton density and proton numbers during the
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proton−Kr36+ cooling process. The cooling time is about 0.04 s - 3.7 s. Figure

3.6 shows the energy evolution of protons with different proton density and proton

numbers during the proton−Kr36+ cooling process

Table 3.4: Initial conditions for the energy evolution of Kr36+ with different initial
Kr36+ energy during the proton−Kr36+ cooling process.

proton density (cm−3) 108

proton number 108

initial proton temperature (eV) 1

number of Kr36+ 103
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Figure 3.7: Energy evolution of Kr36+

with different initial Kr36+ energy during
the proton−Kr36+ cooling process.
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Figure 3.8: Energy evolution of protons
with different initial Kr36+ energy during
the proton−Kr36+ cooling process.

With the initial conditions shown in Table 3.4, Figure 3.7 shows the energy evo-
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lution of Kr36+ with different initial Kr36+ energy during the proton−Kr36+ cooling

process. The cooling time is about 0.1 s - 1.0 s. Figure 3.8 shows the energy evolu-

tion of protons with different initial Kr36+ energy during the proton−Kr36+ cooling

process.

Table 3.5: Initial conditions for the energy evolution of Kr36+ with different initial
proton energy during the proton−Kr36+ cooling process.

proton density (cm−3) 108

proton number 108

initial energy of Kr36+ (eV/q) 500

number of Kr36+ 103
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Figure 3.9: Energy evolution of Kr36+

with different initial proton energy dur-
ing the proton−Kr36+ cooling process.
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Figure 3.10: Energy evolution of protons
with different initial proton energy dur-
ing the proton−Kr36+ cooling process.

With the initial conditions shown in Table 3.5, Figure 3.9 shows the energy evo-
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lution of Kr36+ with different initial proton energy during the proton−Kr36+ cooling

process. The cooling time is about 0.4 s, depending on the proton initial energy.

Figure 3.10 shows the energy evolution of protons with different initial proton energy

during the proton−Kr36+ cooling process.

Electron cooling

Similar to proton cooling, electron cooling uses electrons to cool the ions, but the

electron is much lighter than the proton, and hence has a much larger charge-to-mass

ratio q/m. In magnetic fields of a few Tesla, the emission of synchrotron radiation

becomes significant and dampens the electron motion transverse to the magnetic field

lines at time scales of seconds or faster (because the emitted power of synchrotron

radiation scales inversely with the 4th power of the particle mass, this effect is com-

pletely negligible for protons). Here, the dissipation via synchrotron radiation has to

be taken into account. The time evolution of the ion and electron energy, which is

identical to Eq. 3.18 with the exception of the added synchrotron radiation term, is

given by [90, 91, 92]

d

dt
Ti = − 1

τi
(Ti − Te)

d

dt
Te =

1

τi

Ni

Ne
(Ti − Te)−

1

τe
(Te − Tres)

τi =
3(4πε0)2memic3

8
√

2πneZ2e4ln(Λ)
(
kBTi

mic2
+

kBTe

mec2
)

3
2

τe =
3πε0mec3

e2ω2
c
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ωc =
eB

me

ln(Λ) = ln(4π(
ε0kB

e2
)

3
2

1

Z

√
Te

ne
(Te +

me

mi
Ti + 2

√
me

mi

√
TeTi)), (3.19)

where Ti, mi, Z, and Ni are respectively ion temperature, ion mass, ion charge, and

the number of ions. Te, ne, me, ωc, Ne, and τe are respectively electron temperature,

electron density, electron mass, electron cyclotron frequency, number of electrons,

and electron synchrotron radiation time constant, B is the magnetic field strength,

and Tres is the surrounding temperature (typically 293 K for a room-temperature

vacuum vessel). Again, the influence of the magnetic field on the collision dynamics

is neglected, but the field is taken into account in terms of the synchrotron radiation.

Table 3.6: Initial conditions for the energy evolution of various highly charged ions
during the electron−HCI cooling process.

electron density (cm−3) 107

electron number 107

initial electron temperature (K) 300

number of HCI 103

initial energy of HCI (eV/q) 500

With the initial conditions shown in Table 3.6, Figure 3.11 shows the energy

evolution of C6+, Fe23+, Kr36+, and U89+ during the electron−HCI cooling process.
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Figure 3.11: Energy evolution of vari-
ous highly charged ions (HCI) during the
electron−HCI cooling process.
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Figure 3.12: Energy evolution of elec-
trons during the electron−HCI cooling
process.

The cooling time is about 0.24 s - 0.35 s, depending on the ion species. Figure 3.12

shows the energy evolution of electrons during the electron−HCI cooling process.

Because of energy conservation, the electron energy increases when the ion energy

decreases during the electron−HCI cooling process, but via synchrotron radiation

process, the electron energy drops too during the electron−HCI cooling process.

Table 3.7: Initial conditions for the energy dependence of Kr36+ on the ratio of the
number of HCI (Ni) to the number of electrons (Ne).

electron density (cm−3) 107

electron number 107

initial electron temperature (K) 300

initial energy of Kr36+ (eV/q) 500
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Figure 3.13: Energy dependence of Kr36+

on the ratio of the number of HCI (Ni)
to the number of electrons (Ne).
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Figure 3.14: Energy dependence of elec-
trons on the ratio of the number of HCI
(Ni) to the number of electrons (Ne).

With the initial conditions shown in Table 3.7, Figure 3.13 shows the energy

dependence of Kr36+ on the ratio of the number of HCI (Ni) to the number of electrons

(Ne). The cooling time is about 0.02 s - 1.0 s, depending on the ion number. Figure

3.14 shows the energy dependence of electrons on the ratio of the number of HCI (Ni)

to the number of electrons (Ne).

Table 3.8: Initial conditions for the energy evolution of Kr36+ with different initial
Kr36+ energy during the electron−Kr36+ cooling process.

electron density (cm−3) 107

electron number 107

initial electron temperature (K) 300

number of Kr36+ 103
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Figure 3.15: Energy evolution of Kr36+

with different initial Kr36+ energy during
the electron−Kr36+ cooling process.
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Figure 3.16: Energy evolution of elec-
trons with different initial Kr36+ energy
during the electron−Kr36+ cooling pro-
cess.

With the initial conditions shown in Table 3.8, Figure 3.15 shows the energy evo-

lution of Kr36+ with different initial Kr36+ energy during the electron−Kr36+ cooling

process. The cooling time is about 0.15 s - 0.44 s, depending on the initial Kr36+ en-

ergy. Figure 3.16 shows the energy evolution of electrons with different initial Kr36+

energy during the electron−Kr36+ cooling process.

Table 3.9: Initial conditions for the energy evolution of Kr36+ with different surround-
ing temperature during the electron−Kr36+ cooling process.

electron density (cm−3) 107

electron number 107

number of Kr36+ 103

initial energy of Kr36+ (eV/q) 500
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Figure 3.17: Energy evolution of Kr36+

with different surrounding temperature
during the electron−Kr36+ cooling pro-
cess.
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Figure 3.18: Energy evolution of elec-
trons with different surrounding temper-
ature during the electron−Kr36+ cooling
process.

With the initial conditions shown in Table 3.9, Figure 3.17 shows the energy evolu-

tion of Kr36+ with different surrounding temperature during the electron−Kr36+ cool-

ing process. The cooling time is about 0.3 s. It seems that they are not much different

at both surrounding temperature of 4 K or 300 K. Figure 3.18 shows the energy evo-

lution of electrons with different surrounding temperature during the electron−Kr36+

cooling process.

3.2 Electron-ion recombination

Electron-ion recombination processes in a cooler trap are very important to the cooling

process, as such processes may alter the charge state. Electron-ion recombination has

three modes [93, 94]: radiative recombination, dielectronic recombination [95, 96, 97]

and three-body recombination [98].
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Figure 3.19: Radiative recombination.
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Figure 3.20: Fe23+ radiative recombina-
tion coefficient.

Figure 3.19 shows the radiative recombination (RR) process; it is the inverse

process of photoionization; it can occur when an ion interacts with an electron and

the electron is captured directly into a vacant bound state with the emission of a

photon that carries away the excess energy. The radiative recombination process can

be written as

Aq+ + e− → A(q−1)+ + hν, (3.20)

where hν is the emitted photon. The radiative recombination rate per ion, R, is

conveniently described by the rate coefficient αRR, such that R =αRRne. The radiative

recombination coefficient can be approximated as [94]

αRR = [1.92× 10−13 cm3

s
]Z2

√
eV

T
[ln(

5.66Z√
T

) + 0.196(
T

Z2eV
)1/3], (3.21)

where Z is the ion charge number and T is the effective electron-beam temperature
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which is given [99, 100] by

T = Te +
me

mi
Ti. (3.22)

Radiative recombination rate coefficients can be fitted by the expression [101, 102, 103]

αRR = A× [
√

T/T0(1 +
√

T/T0)
1−B(1 +

√
T/T1)

1+B]−1 (3.23)

where A, B, T0, and T1 are parameters, depending on the ion species. Figure 3.20

shows how the Fe23+ radiative recombination coefficient changes with T . The black

curve is from Eq. 3.21 and the red dashed curve is from Eq. 3.23. The parameters

are from reference [103].

Figure 3.21: Dielectronic recombination. Figure 3.22: Three body recombination.

Figure 3.21 shows the dielectronic recombination (DR) process which occurs when

an ion with at least one bound electron interacts with a free electron, forming a

resonant state where the excess energy is transfered to the bound electron. This

forms a short-lived doubly excited state which subsequently emits a photon, carrying
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away the excess energy. Dielectronic recombination is a two-step process; this process

can be written as

Aq+ + e− → A(q−1)+∗∗ → A(q−1)+∗ + hν, (3.24)

and the dielectronic recombination coefficient [104] is given by

αDR =
1

(kT )3/2

4∑

j=1

cjexp(−Ej

kT
)[cm3/s], (3.25)

where cj, Ej are parameters, depending on the type of ions.

Figure 3.22 shows the three-body recombination (TBR) process. This is a time-

reversed electron impact ionization, and it can occur when two electrons interact with

an ion, one electron falls into a bound state, and the other carries away the excess

energy. This process can be written as

Aq+ + e− + e− → A(q−1)+ + e−. (3.26)

The three body recombination coefficient [94] is given by (note that in this definition,

αTBR contains one power of the electron density ne)

αTBR = [2.0× 10−27cm6s−1]Z3ne(
eV

kT
)4.5. (3.27)

From Eq. 3.19 and Eq. 3.28, we can calculate the ion survival fraction P dur-

ing the electron cooling process. Figure 3.23 shows the Fe23+ survival fraction at a

temperature of 4 K. The electron cooling initial conditions are shown in Table 3.10.

About 95.3% Fe23+ can survive for 0.5 s. Figure 3.24 shows the Fe23+ survival fraction
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Table 3.10: Initial conditions for the Fe23+ survival fraction at a temperature of 4 K
or 300 K.

electron density (cm−3) 107

electron number 107

number of Fe23+ 103

initial energy of Fe23+ (eV/q) 500

at a temperature of 300 K. About 97.6% Fe23+ can survive for 0.8 s.

dP

dt
= −P [αRR(T ) + αDR(T ) + αTBR(T )]ne (3.28)

If we only consider radiative recombination at a temperature of 4 K, the Fe23+

Figure 3.23: Fe23+ survival fraction at an
environment temperature of 4 K includ-
ing RR, DR, and TBR.

Figure 3.24: Fe23+ survival fraction at
an environment temperature of 300 K in-
cluding RR, DR, and TBR.

survival fraction curve is shown in Figure 3.25. About 95% Fe23+ can survive for 0.8

s. Again only considering radiative recombination at a temperature of 300 K, the



63

Figure 3.25: Fe23+ survival fraction at an
environment temperature of 4 K includ-
ing RR.

Figure 3.26: Fe23+ survival fraction at
an environment temperature of 300 K in-
cluding RR.

Fe23+ survival fraction curve is shown in Figure 3.26. About 98% Fe23+ can survive

for 0.8 s.

To summarize, electron cooling and proton cooling of ions such as C6+, Fe23+,

Kr36+, and U89+ have been modeled in the context of developing an ion cooler trap for

the TITAN facility. For electron cooling of HCIs of initial energy of 500 eV/q, under

the condition of ne=107 cm−3, Ne=107, Ni=103, and an initial electron temperature

of 300 K, the cooling time is about 0.24 s - 0.35 s, depending on the ion species.

Significant ion losses occur only after the HCIs are almost fully cooled. For proton

cooling of HCIs of initial energy of 500 eV/q, under the condition of np=108 cm−3,

Np=108, Ni=103, and initial proton temperature of 1 eV, the cooling time is about 0.15

s - 2.3 s, depending on the ion species, comparable to the results for electron cooling.

It remains to be seen whether the higher (compared to electron cooling) density of
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cold protons can be realized experimentally. As emphasized earlier, our calculations

do not included the effect of the magnetic field on the collision dynamics and on

the recombination processes. No analytic expressions are available for a scenario

with a strong magnetic field. G. Zwicknagel et al. have developed simulations for

the interaction of charged particles in a strong magnetic field, using computationally

intensive particle-in-a-cell methods [89]. Their recently published results for electron

cooling of bare uranium in a 6 T field within the context of the HITRAP experiment

at GSI can be compared to our simple approach, and the result is shown in Figure 3.27

The cooling rate is found to be very similar for both approaches; within the expected

accuracy of these models, we can consider the results to be essentially identical. This is

a strong indication that the magnetic field might not play as an important role as has

been speculated. Based on these findings, we have established a preliminary design

for a cooler trap, accommodating electron and proton cooling for highly charged ions

and buffer gas cooling for singly charged ions. The first goal will be to demonstrate

the sympathetic cooling of HCIs to ≈ 1 eV/q within about 1 s. Ultimately, it might

be possible to boost the coolant density significantly higher, using e.g. the rotating

wall technique, where electron densities of 3 × 1010 cm−3 have been achieved [105].

This could in turn lead to the cooling of HCIs in 100 ms or less.
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Figure 3.27: Cooling of U92+ in the field-free case and cooling of U92+ with B=6 T
from G. Zwicknagel.
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Chapter 4

DESIGN OF THE COOLER TRAP

Based on the discussions of various cooling mechanisms presented in the previous

chapter, it was decided that the most promising route would be sympathetic cooling

via the Coulomb interaction, using either self-cooling electrons or cold protons. Sym-

pathetic cooling has proven to be an efficient, widely applicable method, and electron

cooling of protons was demonstrated and has been extensively used in the efforts to

produce anti-hydrogen [106]. At RIKEN (Japan) an effort is underway to cool highly

charged ions with positrons and electrons [107], and the HITRAP collaboration at

GSI (Germany) is currently readying an electron cooler trap [108]. The cooling times

involved and the required particle densities clearly require an additional trap for this

purpose. Electron cooling relies on synchrotron radiation in a strong magnetic field

of several Tesla, demanding the use of a Penning trap. In a generic Penning trap,

particles of opposite charge cannot be stored simultaneously. However, a potential

well scheme known as a nested trap can be employed and will be discussed below.
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4.1 Schematic diagram for cooling of HCIs

For proton cooling, protons should be trapped in a region such as the harmonic

potential region shown in Figure 4.1a, with the potential at both ends of the trapped

proton region higher than the potential inside the trapped proton region. An axial

electric field force directed to the center of this region traps the protons in the axial

direction. Because of their high energies, highly charged ions need the higher potential

well shown in Figure 4.1b. When highly charged ions cross the trapped proton region,

they collide with protons in the region, and proton cooling can occur. The cooled

highly charged ions are trapped in the small proton trapping region shown in Figure

4.1c. By lowering the potential as shown in Figure 4.1d, low-charge protons are

ejected first.

Figure 4.1: Schematic diagram for proton cooling of HCIs. Larger filled circles rep-
resent HCI; smaller filled circles represent protons. a) Protons are prepared in a
harmonic trap after multiple injections; b) highly charged ions are injected into a
larger square-well trap where coolant protons are contained in the harmonic trap. c)
HCIs are cooled down in collisions with protons; d) HCIs may be further cooled by
evaporative cooling of protons during a slow ejection of protons.
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For electron cooling, electrons should be trapped in a region such as the harmonic

potential region shown in Figure 4.2a, where the potential at both ends of the electron

trapping region is lower than the potential inside the electron trapping region. An

axial electric field force directed to the center of this region traps electrons in the

axial direction. Highly charged ions need the high potential well shown in Figure

4.2b, similar to the proton cooling case. When highly charged ions cross the electron

trapping region, electrons collide with ions, electron cooling can occur, and highly

charged ions finally cool down shown in Figure 4.2c. By lowering the potential as

shown in Figure 4.2d, cooled highly charged ions are ejected.

Figure 4.2: Schematic diagram for electron cooling of HCIs. Larger filled circles
represent HCI; smaller filled circles represent electrons. a) Electrons are prepared
in a harmonic trap after injection; b) highly charged ions are injected into a larger
square-well trap where coolant electrons are contained in the harmonic trap. c) HCIs
are cooled down in collisions with electrons; d) HCIs are ejected.
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4.2 Designing potentials

Before we design a cooler trap, we use SIMION 7.0, which is a commercial software

package, to calculate the potential for certain geometries of the cooler trap and try

to find how to generate the potential we need. We use SIMION to simulate the

ions’ trajectories when they enter the magnetic field, electric field, or both, and find

the correct parameters for geometry of the injection system, voltages at the different

electrodes, and so on.

We simulate the ions’ path in the electric field. To do this, we first need to define

the electrode geometry in a three-dimensional region. The three-dimensional volume

is subdivided into a grid with grid spacing h in three dimensions. The volume then

consists of many grid points (i, j, k). The potential V can be solved by Laplace’s

Equation

12V (i, j, k) =
∂2V (i, j, k)

∂2x
+

∂2V (i, j, k)

∂2y
+

∂2V (i, j, k)

∂2z
= 0, (4.1)

where the free charge is zero in that region. We use the following approximate rela-

tions:

∂2V (i, j, k)

∂2x
≈ Vi−1,j,k + Vi+1,j,k − 2Vi,j,k

h2
(4.2)

∂2V (i, j, k)

∂2y
≈ Vi,j−1,k + Vi,j+1,k − 2Vi,j,k

h2
(4.3)

∂2V (i, j, k)

∂2z
≈ Vi,j,k−1 + Vi,j,k+1 − 2Vi,j,k

h2
. (4.4)



70

Inserting the Eq. 4.2, Eq. 4.3, and Eq. 4.4 into Eq. 4.1, we have

Vi−1,j,k + Vi+1,j,k − 2Vi,j,k

h2
+

Vi,j−1,k + Vi,j+1,k − 2Vi,j,k

h2
+

Vi,j,k−1 + Vi,j,k+1 − 2Vi,j,k

h2
= 0.

(4.5)

From Eq. 4.5,

Vi,j,k =
Vi−1,j,k + Vi+1,j,k + Vi,j−1,k + Vi,j+1,k + Vi,j,k−1 + Vi,j,k+1

6
. (4.6)

Eq. 4.6 is the finite-difference approximation, i.e. the potential of a grid point is

the average value of its nearest six neighbors. SIMION puts the electrode geometry

into the three dimensional volume, and the potentials of the electrode grid points are

held fixed. The potentials of non-electrode points can then be adjusted according to

Eq. 4.6 to get the correct potential values for the non-electrode points. To do this, a

group of arbitrary potential values Vi,j,k are first given to all the non-electrode points

in the volume. Initially, they will not satisfy Eq. 4.6; that is to say

Vi,j,k 2=
Vi−1,j,k + Vi+1,j,k + Vi,j−1,k + Vi,j+1,k + Vi,j,k−1 + Vi,j,k+1

6
. (4.7)

Next, each old value Vi,j,k is replaced with a new value V
′
i,j,k, given by

V
′

i,j,k =
Vi−1,j,k + Vi+1,j,k + Vi,j−1,k + Vi,j+1,k + Vi,j,k−1 + Vi,j,k+1

6
. (4.8)

Moving from one grid point to the next, the values for all grid points are adjusted in

this way, leaving the electrode potentials fixed. The process is then repeated, until it

finally converges on a set of values which satisfy the finite-difference approximation

for all the grid points. This method is called the relaxation method.
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SIMION makes use of a geometry file to mark the grid points and to define the

electrode geometry. We save this file as ∗.PA#, where ∗ can be any name. From

∗.PA#, by the relaxation method, the potentials for all the grid points are calculated

according to the electrode boundary conditions. SIMION adjusts all the potential

values once according to the finite-difference approximation; that is, a single iteration

is first performed. If the potential value for the grid points changes by less than

the convergence objective (minimum 1.0 × 10−7) between successive iterations, the

potential refining is finished, otherwise the process is repeated. Once converged, some

specific SIMION files are generated. For instance, for a system with N electrodes,

after refining from ∗.PA#, SIMION generates N + 1 specific potential solution files

∗.PA0, ∗.PA1, ......, ∗.PA9, ∗.PAa, ∗.PAb, ....... ∗.PA1 is a refined array; it is the

specific finite-difference approximation solution when the voltage at electrode #1 is

set at 10 kV and the voltages are set to zero at the other electrodes. ∗.PA2 is also

a refined array; it is the specific finite-difference approximation solution when the

voltage at electrode #2 is set to 10 kV and the voltages are set to zero at all other

electrodes, and so on for all the electrodes. The solutions are independent of the real

voltages at the electrodes. Real voltages at all the electrodes can be set by the “Fast

Adjust” button or by a user program where the variables Adj Elect00 to Adj Elec30

are set to the real potentials of the different electrodes. After a “Fast Adjust”, the

fast adjust file ∗.PA0 is changed and will supply the potentials for all the grid points
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which are given by

∗.PA0(i, j, k) =
V 1

100000
∗ .PA1(i, j, k) +

V 2

100000
∗ .PA2(i, j, k) + ......, (4.9)

where V 1, V 2,...... are respectively the voltages (V) at the electrodes.

The potential along the central line is very important, as it supplies the axial

trap well. As an example of a simple geometry, a cylindrical Penning trap is shown in

Figure 4.3; there are 11 equal-length electrodes, arranged according to reference [109].

The length of each electrode is set to 7 mm, and the radius of the electrodes is set to

10 mm. Because the geometry in SIMION is given according to grid points, the ratio

of radius to length of each electrode is set to about 1.42; the gap is 0.3 mm. Laplace’s

equation solutions can be solved analytically to generate the axial harmonic potential.

Table 4.1 gives the cylindrical trap geometry and the electrode voltages [109]. V0 is

the potential difference between the endcap electrode and the ring electrode; the

electrode definition is shown in Figure 2.10. This cylindrical trap geometry was

loaded into SIMION and the voltages Vcalc at different electrodes are given in Table

4.2. These voltages satisfy the conditions in Table 4.1, where V0 is equal to 20 V.

After potential refining and “Fast Adjust”, the axial potential can be obtained from

the potential array, .PA0, and is shown by the black curve in Figure 4.4, which is a

harmonic potential in that region as expected.

As a check, we can make use of ∗.PA1, ∗.PA2, ......, ∗.PAa, ∗.PAb, ..... and the

target potential T (i, j, k) which is required for a trap to know the voltages V 1, V 2,



73

...... so that this group of voltages gives the potential T (i, j, k).

V 1

100000
∗ .PA1(i, j, k) +

V 2

100000
∗ .PA2(i, j, k) + ...... = T (i, j, k). (4.10)

As an example, we load same geometry as above into SIMION. After refining, the

potential arrays ∗.PA1, ∗.PA2, ......, ∗.PAa, and ∗.PAb are generated; there are 11

potential arrays which are independent of real voltage at those cylindrical electrodes,

and we take the axial potential shown by the black curve in Figure 4.4 as the target

potential, and work out the voltages at the cylindrical electrodes. We define the

following function to find the voltages at different electrodes:

G =
∑

i

[
V1

100000
∗ .PA1(i, j0, k0) +

V2

100000
∗ .PA2(i, j0, k0) + ...... +

V11

100000
∗ .PAb(i, j0, k0)− T (i, j0, k0)]

2, (4.11)

i is summed in the target function region where we hope that the potential is near the

target potential when voltages V1, V2, ......, and V11 are applied at the 11 electrodes.

T (i, j0, k0) is the target potential along the axial direction, the axial line is in the x

direction, and j0 and k0 are constants.

The function G shows the difference between the potential calculated by SIMION

and the target potential in the special axial position region. If two potentials are very

nearly the same, that means G has a minimum, so we have

∂G

∂Vm
= 0.

m = 1, 2, ......, 11 (4.12)
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From the set of Equations 4.12, normally we can get 11 variables V1, V2, ......, and

V11. The same method can be applied to other geometries too.

Considering V1 = V2 = V3 = V9 = V10 = V11 = −V6, V4 = V8, and V5 = V7,

Eqns. 4.12 reduce to only three equations; there are three independent variables.

We also simplify the target function. If we fit the potential curve shown in black in

Figure 4.4, it will give a target potential at the two ends that is simply a constant

in a small axial region; it is a harmonic function in the central axial region. Let G

have a minimum in these three regions; the voltages VSim are then found and are

shown in Table 4.2. The red dashed curve in Figure 4.4 is the axial potential which

is generated by applying these electrode voltages. The very good agreement between

the two curves demonstrates the validity of the numerical method using SIMION.

Figure 4.3: Cylindrical trap.

4.3 Injection of highly charged ions, electrons and protons

Because the injection system is very important to the cooler trap, we use SIMION to

simulate the injection of highly charged ions, electrons and protons. For the 7 Tesla

magnetic field, we take data from the manufacturer of our magnet, Cryomagnetics,
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Table 4.1: Geometry of the cylindrical Penning trap and electrode voltages.

Radius/length of electrode 1.42

V1/V0 −0.3856

V2/V0 0.4830

Table 4.2: Vcalc: Voltages at the cylindrical electrodes from the analytical approach.
VSim: Voltages at the cylindrical electrodes found by our numerical method using
SIMION.

Electrode # VCalc VSim

1 10 9.9888

2 10 9.9888

3 10 9.9888

4 9.66 9.535

5 −7.712 −7.6969

6 −10 −9.9888

7 −7.712 −7.6969

8 9.66 9.535

9 10 9.9888

10 10 9.9888

11 10 9.9888
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Figure 4.4: Cylindrical trap axial potential; the two curves are overlapped.

Inc., and we simulate trajectories of highly charged ions, electrons and protons in the

electric field and the magnetic field. We try to find a set of parameters, such as the

voltages at different electrodes, which make the transportation efficiency high, and

result in final energies of highly charged ions, electrons and protons which are suitable

initial conditions for the cooler.

4.3.1 Magnetic field

Normally, we can use the user program to load magnetic field data into SIMION.

Appendix D shows how to load a magnetic field; the file 7teslamagneticfield.dat is

the data file supplied by the maker of the magnet for the cooler trap. It is a two

column data file; the Penning trap magnet has cylindrical symmetry, so the magnetic
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field location is specified by the two variables of axial and radial position, and the

magnetic field vector is given as axial and radial components. The first column in

the file is the axial magnetic field, and the second column is the radial magnetic field.

The data in the first row is for grid point (0, 0) which is at the center of the magnet,

the first variable being axial position and second one being the radial position. The

data in subsequent rows go according to (0, 0), (1, 0), ......, (0, 1), (1, 1), ...... . In

SIMION, when an ion’s position is not at the grid point, its magnetic field at that

position will be given according to the 4 nearest grid points’ magnetic fields. The 4

nearest grid points are chosen on the same radial surface as the ion position.

4.3.2 Simulation of charged particle injection

Magnetic fields are important to the TITAN project. The electron beam ion trap,

cooler trap, and Penning trap all use magnetic fields to trap charged particles in the

radial direction. Because of magnetic field gradients, charged particles experience an

axial force; this makes it difficult for charged particles to enter a strong magnetic field

region from a weak magnetic field region. Proper parameters must be chosen so that

ions or protons or electrons can be injected into the trap in the strong magnetic field

region. In the field, Newton’s equation is given by

dυx

dt
= ax(x, y, z, υx, υy, υz, t)

dυy

dt
= ay(x, y, z, υx, υy, υz, t)

dυz

dt
= az(x, y, z, υx, υy, υz, t)
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dx

dt
= υx

dy

dt
= υy

dz

dt
= υz, (4.13)

where a is the acceleration given by the electric and magnetic forces and interactions

e.g. with a buffer gas.

The velocity (υx, υy, υz) and positions (x, y, z) along the three directions are deter-

mined by the equations above. When we load the magnetic field data file and .PA0

into SIMION, we calculate the force on the ion, therefore the acceleration is known.

Furthermore, from Eq. 4.13, the ion trajectory can be calculated by the fourth-order

Runge-Kutta method [110], step by step from a given starting position.

Simulation of proton injection

Proton injection is shown in Figure 4.5. The axial magnetic field can be seen in Figure

4.6, with the magnetic field stronger on the left side. The injection system consists of

the trap, drift tube, and lens system. Figure 4.7 shows the enlarged trap region. The

geometry file is shown in Appendix E; the trap consists of 14 cylindrical electrodes,

each of them is 19 mm in radius and 12.7 mm in length, with 2 mm space between

electrodes. In this setup, the first trap electrode is 1 mm from the magnetic field

center. The drift tube is 343 mm long and its radius is 19 mm. The center of the drift

tube is 382 mm from the center of the magnetic field. The two lenses have similar

structure, each consisting of three electrodes. The electrodes of the first lens, which is
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nearest to the trap region, are 100 mm long with a radius of 60 mm. The gap between

electrodes is 20 mm, and the end point of first lens is 1241 mm from the magnetic

field center. The electrodes of the second lens are 60 mm long with a radius of 40

mm. The gap between them is 10 mm, and the end point of the second lens is 2241

mm from the magnetic field center. In Figure 4.5, protons enter into the electric and

magnetic fields from a position 2400 mm from the magnetic field center. The voltages

at the trap electrodes are all set to 0 V. Voltages for the two end electrodes of the

first lens are set to zero, the voltage for the middle electrode of the first lens is set to

−5754 V, the voltages for two end electrodes of the second lens are set to zero, and

the voltage for the middle electrode of the second lens is set to −3754 V. The voltage

of the drift tube is set to 0 V at the beginning, but when the protons pass its center,

the voltage is switched to −2000 V. If not, the proton energy will not be reduced to

the very low desired energy. Protons entering the trap are chosen randomly from an

angle-radius ellipse with a maximum angle of 0.5◦ with the axis, and a radius of 4

mm. The initial proton energy is 2.14 keV. We find that if the protons end up with a

final kinetic energy of about 139 eV in the trap region, as in the simulation shown in

Figure 4.5, the injection efficiency is 100%. However, this proton energy is too high

for our purposes.

If the proper parameters are chosen, the proton energy can be reduced to a few

eV. Figure 4.8 and 4.9 show how this can be done. In Figure 4.8, the voltage for the

middle electrode of the first lens is −6000 V, the voltage for the middle electrode of
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Figure 4.5: Proton injection, starting at a position 2400 mm from the center of
the magnetic field (space-charge effects are not included). In this and the following
SIMION screenshots, the numerical information in the text window is irrelevant.

Figure 4.6: Axial magnetic field curve for our 7 Tesla magnet.
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Figure 4.7: Enlarged trap region.

second lens is −3100 V, the proton starting position is 4 mm from the central line and

the angle between the proton velocity direction and the central line is 0.5◦. In Figure

4.9, the voltage for the middle electrode of the first lens is −5508 V, the voltage for

the middle electrode of the second lens is −4408 V, the proton starting position is

0 mm from the central line and the angle between the proton velocity direction and

the central line is 0.5◦. For a single proton, by only adjusting some parameters, that

proton can be injected into the trap region with low energy.

Figure 4.10 shows protons injected into the trap region with very low final energy

(16 eV) from a position 1789 mm from the center of the magnetic field. Because of

the axial force, some protons are reflected back. The voltage for the middle electrode

of the first lens is −3900 V, others are zero; the initial proton energy is 2.016 keV,

and, in a way similar to Figure 4.5, protons are injected with random initial radius

and random initial angle. The maximum radius is still 4 mm, but the maximum angle
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Figure 4.8: Single proton injection with an initial proton position 4 mm from the
central line.

Figure 4.9: Single proton injection with an initial proton position 0 mm from the
central line.



83

is reduced to 0.1◦. For 200 protons injected, more than 80% of them reach the trap

region. For increasing angle, the beam emittance is large, and more protons will be

reflected back.

Figure 4.10: Proton injection, starting at a position 1789 mm from the center of the
magnetic field.

If protons are injected from a relatively distant position such as shown in Fig-

ure 4.11, where protons are injected from a starting position 2600 mm from the

magnetic field center, the final proton energies are about 16 eV. If 200 protons are

injected, about 50% can reach the trap region. For this simulation, the lens system

has been moved 200 mm further from the center of the magnetic field compared to

the position shown in Figure 4.5. The initial maximum radius is 4 mm, the initial

maximum angle is 0.5◦, the voltage of middle electrode of the first lens is -3900 V,
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the voltage of middle electrode of the second lens is -3300 V, and the initial proton

energy is 2.016 keV.

Figure 4.11: Proton injection, starting at a position 2600 mm from the center of the
magnetic field.

Simulation of highly charged ion injection

Figure 4.12 shows Kr36+ injection. The geometry is the same as for the proton injec-

tion shown in Figure 4.5. The initial maximum radius is 4 mm, the initial maximum

angle is 0.5◦, the voltage of the middle electrode of the first lens is -5754 V, the voltage

of the middle electrode of the second lens is -3754 V, and the Kr36+ energy is 2.128

keV/q. We find that the Kr36+ energy can also be reduced to a few hundred eV/q.

Ions with a few hundred eV/q are suitable for electron cooling and proton cooling as
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discussed in section 3.1.5.

Figure 4.12: Krypton injection.

Simulation of electron injection

The injection system for electrons is the same as the proton injection system shown in

Figure 4.5. From Appendix A, the axial force only depends on the magnetic gradient

and radial energy, if the energy is the same, because the electron is very light, its

acceleration will be larger, and the electron velocity reduces quickly. Figure 4.13

shows that it is possible to reduce the single electron energy from 2.3 keV to a few

eV. In this example, the voltage for the middle electrode of the first lens is 100 V,

the voltage for the middle electrode of the second lens is 3200 V, the others are zero,

and when the electron passes the center of drift tube, the voltage of the drift tube
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will be changed to 2000 V. Figure 4.14 shows that the electron energy can be reduced

to a few hundred eV with 100% transportation efficiency when electrons are injected

from a starting position 968 mm from the center of the magnetic field. The voltages

of the lens system are all set to zero, the initial maximum radius of the electron beam

is 4 mm, the initial maximum angle of the electrons is 0.1◦, and the initial electron

energy is 2.3 keV. From Eq. 3.19 in section 3.1.5, electrons can cool themselves to

ambient temperature by emitting synchrotron radiation. Figure 4.15 shows that 300

eV electrons can cool themselves to room temperature in about 0.6 s.

Figure 4.13: Single electron injection with an initial position 4 mm from the central
line.

When injecting charged particles into the trap region, it is very difficult for very

low-energy charged particles because of the large magnetic gradient region. For ions of
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Figure 4.14: Electron injection.
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Figure 4.15: Electron synchrotron radiation.
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a few hundred eV energy this is possible for electron or proton cooling. For electrons,

cooled by synchrotron radiation, one can also obtain cool electrons in the trap, but if

we need low energy protons, only a certain percentage of the protons can be injected

into the trap region with sufficiently low energy.

4.4 Cooler trap implementation

A layout of the cooler trap system under development is shown in Figure 4.16. It will

allow electron cooling and proton cooling for highly charged ions, and it can be used

in buffer gas cooling mode for singly charged ions. The trap consists of 28 cylindrical

electrodes, each of them 19 mm in radius and 12.7 mm in length; the ratio of the

radius to the length of the electrodes is set to about 1.42. A local harmonic potential

can be generated anywhere in the cooler trap region (see section 4.2) as well as various

nested well schemes. The trap works in transmission mode, i.e. HCI from the EBIT

are injected from one side (left in Fig. 4.16) and after cooling they are ejected on the

other side. This poses some difficulties, if three species of particles are to be injected

separately, HCI, protons, and electrons. In the current design, HCI and protons enter

from the same side, using a 4-way electrostatic beam switch. Electrons are inserted

into the trap from the other side. The source needs to be off-axis to allow the HCI to

exit. The electron gun is placed in the fringe field of the magnet, where it is possible

to bring them on-axis with an electrostatic deflector.

At least initially, the cooler trap will be operated at room temperature like all
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TITAN components with the exception of the EBIT. HCI are very prone to charge

change via electron capture from the rest gas, so special attention has to be paid to the

vacuum conditions, in particular inside the trap, where the ions spend a significant

amount of time. Vacuum on the order of 10−10 mbar or better is mandatory. Ion

getter pumps with high pumping speed are located right outside the magnet and

additional non-evaporable getter pumps (NEGs) are placed in the trap region inside

the magnet.

The magnet for the cooler trap was delivered in March 2008. It was built by

Cryomagnetics and has a large, homogeneous field region of 7 Tesla. Within a central

volume of 4” length and 1” radius, the homogeneity is 10 ppm, and axially the field is

homogeneous to 1000 ppm in a 40 cm long region, permitting the use of a large trap

structure necessary for implementing the nested wells and for the separate storage and

preparation of different species, e.g. HCI and electrons. The magnetic-field sensitive

environment at ISAC requires the use of an actively shielded magnet system. The

10 Gauss line of this magnet is on-axis 1.5 meters from the center and radially 1

meter. The magnet is embedded in a low-loss cryostat. The liquid helium and liquid

nitrogen loss rates have been determined to be less than 1.5 litres per day and 5

litres per day, respectively. After charging the magnet in early May 2008, it has been

running smoothly at 7 Tesla without problems. Figure 4.17 shows the superconducting

magnet, the axial magnetic field is shown in Figure 4.6.

The design of all the vacuum parts and the electrode structure has been completed
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and is being submitted to the TRIUMF design shop in July 2008. Manufacture of

the parts is anticipated by fall 2008 and assembly of the trap for spring 2009.

Figure 4.16: a) A schematic diagram for the cooler trap. FC, MCP, DB, TP, IP, E-
Gun, NEG represent Faraday cup, multichannel plate, diffusion barrier, turbo pump,
ion pump, field emission array, nonevaporative getter, respectively. b) The electrode
structure. Electrodes 8, 14 and 19 are split into quadrants, and electrodes 7, 9, 13,
15, 18, and 20 into 2 segments.
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Figure 4.17: 7 Tesla superconducting magnet made by Cryomagnetics, Inc. at the
University of Manitoba. The dewar has a length of 117 cm and a diameter of 86 cm.



93

Chapter 5

MASS MEASUREMENT OF THE HALO NUCLEUS

BERYLLIUM-11 AT TRIUMF

Assembly of the cooler trap can only begin in 2009, and is beyond the time frame of

this thesis. The startup of TITAN using singly charged ions provided the opportunity

to work on some real mass data. A first focus of TITAN has been the light, radioactive

halo nuclei 8He+, 8Li+, 9Li+, 11Li+ and 11Be+, which have received a lot of attention

in recent years, after the discovery of the first such nucleus, 11Li, by Tanihata in 1985.

In this chapter, we present a mass measurement evaluation for the 11Be+ ion, which

provides a significant improvement in the determination of the mass excess.

The neutron or two-neutron separation energy for nuclei near the dripline may be

less than 1 MeV compared with the 6−8 MeV observed in stable nuclei. The neutron

density distribution in nuclei near the dripline has an extremely long tail, and the way

this affects the reaction cross sections brings new properties to those nuclei. It is very

interesting to study neutron halo candidates such as 6He, 11Li, 11Be, 14Be, 17B [111].

11Be is a neutron halo nucleus [112] with a very small separation energy for the last

neutron [113]. Its lifetime is 19.6 sec. It consists of an inert core and a loosely bound
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neutron. Table. 5.1 and Figure 5.1 show how the one neutron separation energy of

Be changes with the mass number A. The only information on the halo of 11Be

Table 5.1: The neutron separation energy of beryllium isotopes.

A S(n) (keV)

6 27690

7 10676

8 18899.68

9 1665.3

10 6812.29

11 504

12 3169

comes from the measurement of the proton energy spectrum from the 10Be(d,p)11Be

reaction [28]. The mass excess of 11Be was found to be 20.174 ± 0.007 MeV, and

this data was used for the AME2003 atomic mass evaluation [113, 114]. A modern

Penning trap experiment can do significantly better, and therefore 11Be was chosen

as one of the first cases for the new TITAN facility.
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Figure 5.1: The one neutron separation energy of Be versus A.

5.1 Measurement system of the TITAN Penning trap

The bunched ions are brought to the Penning trap region by lens systems, then

go through drift tubes and a Lorentz steerer, as shown in Figure 5.2, and into the

Penning trap. From Eq. 2.57, if R−(0) is equal to zero, then the method of quadrupole

excitation can not be used. One solution is to use dipolar excitation as soon as the

ions enter the Penning trap and subsequently a quadrupole excitation. This, however,

requires a certain dipolar excitation time, and for the mass measurement of short

lifetime ions, the best way is to use the Lorentz steerer to be sure the ions reach the

center of the Penning trap with finite R−(0). By applying a pulsed voltage to the drift

tube near the Penning trap, the ions enter the Penning trap with a kinetic energy of



96

∼10 eV.

After quadrupole excitation, the ions are extracted from the Penning trap by

applying a voltage pulse at the end-cap electrodes. The pulse is used as the starting

time of the ion TOF. The extraction system is shown in Figure 5.3. Ions go through

the drift tube and lens and are recorded by the MCP. The signal recorded by the MCP

is used as the stopping time of the ion TOF. Figure 5.4 shows the structure of the

TITAN Penning trap. The ideal azimuthal quadrupole potential described in section

2.3.2 is created by the electrodes of the Penning trap together with some correction

electrodes.

Figure 5.2: Injection system of the TITAN Penning trap. Courtesy of M. Brodeur,
TITAN collaboration.
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Figure 5.3: Extracting system of the TITAN Penning trap. Courtesy of M. Brodeur,
TITAN collaboration.

Figure 5.4: Structure of the Penning trap used at TITAN. Courtesy of M. Brodeur,
TITAN collaboration.
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5.2 Analysis method

From the TOF spectrum of the ion to be measured and the TOF spectrum of the

reference ion, we can obtain the cyclotron frequencies of the measured and reference

ions by fitting to a known function. By comparing with the mass of the known

reference ion, and taking into account systematic errors and statistical errors, the ion

mass can be obtained as shown below. The statistical Birge ratio can help to indicate

whether the uncertainty is overestimated or underestimated.

The error analysis for the early TITAN measurements follows the procedures de-

veloped for ISOLTRAP [115, 41]. For the individual measurement, σ(γi
ref ) and σ(γi)

are respectively the statistical uncertainties of the reference ion measurement and

the ion measurement and include uncertainties due to the number of the ions in the

Penning trap. The correction for ion number is made using Z-class analysis, which

uses data showing the relation between the cyclotron frequency and the number of

ions per shot and creates a function by fitting this data (the number of ions per

shot can be obtained from the multiplicity of the MCP event). The fitted function

is then used to extrapolate to one ion, and the cyclotron frequency and its statistical

uncertainty for one ion in the Penning trap are determined. However, for the 11Be

runs, the ion number was so low that Z-class analysis was not performed. σB(γi
ref )

is the standard uncertainty caused by the magnetic field fluctuation. σm(r̄) is the

uncertainty which depends on the mass difference between the ion measured and the
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reference ion. σres(r̄) is a residual systematic effect.

The ratio of the cyclotron frequency of the ion measured to that of the reference

ion is given by

ri =
γi

ref

γi
. (5.1)

The error σc(γi
ref ), which is related to the reference ion individual measurement, is

given by

σc(γi
ref )

γi
ref

=

√√√√[
σ(γi

ref )

γi
ref

]2 + [
σB(γi

ref )

γi
ref

]2, (5.2)

then the error σc(ri) of the individual ion measurement is given by

σc(ri)

ri
=

√√√√[
σ(γi)

γi
]2 + [

σc(γi
ref )

γi
ref

]2. (5.3)

The average ratio of the cyclotron frequency of the ion measured to that of the

reference ion is given by

r̄ =

∑
i

ri

σ2
c (ri)∑

i
1

σ2
c (ri)

. (5.4)

The average error σ(r̄) can be given by

σ(r̄)

r̄
=

1

r̄

1
√∑

i
1

σ2
c (ri)

. (5.5)

Finally, the final error σc(r̄), which includes the standard uncertainty caused by the

magnetic field fluctuations and residual systematic effects, can be given by

σc(r̄)

r̄
=

√

[
σ(r̄)

r̄
]2 + [

σm(r̄)

r̄
]2 + [

σres(r̄)

r̄
]2. (5.6)

The ion mass is given by

Mion =
qion

qref
· r̄ · (Mref − qref · me + Be(ref)/c2) + qion · me −Be(ion)/c2, (5.7)
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where qion is the charge number of the ion, qref is the charge number of the reference

ion, Mref is the mass of the reference ion, me is the electron mass, Be(ref) is the total

electron binding energy of the reference ion, and Be(ion) is the total electron binding

energy of the ion.

The mass uncertainty is given by

∆Mion =
qion

qref

√
(Mref · σc(r̄))2 + (r̄ · ∆Mref

)2, (5.8)

where ∆Mref
is the mass uncertainty of the reference ion.

The Birge ratio is given by

R =
σout

σin
, (5.9)

where σout is given by

σout =

√√√√√
∑

i
(ri−r̄)2

σ2
c (ri)

(N − 1)
∑

i
1

σ2
c (ri)

, (5.10)

and σin is given by

σin =

√√√√ 1
∑

i
1

σ2
c (ri)

. (5.11)

When the Birge ratio is more than one, it means there is some uncertainty which

not been included; when the Birge ratio is less than one, it means the uncertainty is

overestimated.

5.3 11Be data analysis

After the mass measurements, the cyclotron frequencies of the measured ion and the

reference ion are extracted from the TOF spectra. We use a program, EVA, to fit the
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TOF spectrum which uses the MIKE function shown in Eq. 2.60 to calculate the time

of flight, taking into account the interaction between the ion and the background gas.

The radial energy, Er, can be derived in the same way as used to obtain Eq. 2.55 by

adding the average damping force [36]

,F = −δ · m · ,̇r, (5.12)

where δ is the damping coefficient.

The MIKE function depends on V (z), which we can get for a given Penning trap

extraction system by using SIMION. Figure 5.5 shows the axial potential V (z) for the

system setup described in Figure 2.13, and is based on the real TITAN setup. B(z)

is known, and from Eq.2.55, E0 is related to the initial R+ and R−, so after some

variables are known, the time of flight can be calculated using the MIKE function.

When using MIKE function fitting, we leave some parameters variable and some fixed.

The EVA control is shown in Figure 5.6. The MCA range decides the TOF range

we can record, so only TOF data which fall in this range will be taken into account.

Figure 5.7 shows the TOF spectrum for run 033066, which is a mass measurement of

6Li+. The blue line in Figure 5.7 shows the TOF range selected by the MCA range in

EVA; the total number of 6Li+ ions falling in this range is 2116. Figure 5.8 shows the

TOF spectrum for run 033072, which is a mass measurement of 11Be+. Here, the total

number of 11Be+ ions falling in the selected range is 619. The detector only records a

few ions at a time. Figure 5.9 shows the number of 6Li+ ions per shot for run 033066;

the maximum is about 8. Figure 5.10 shows the number of 11Be+ ions per shot for run
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033072; the maximum is about 3. A full scan consists of measurements of 41 frequency

points, and the TOF spectrum consists of many scans. FitPar in Figure 5.6 shows

the parameters for the MIKE function fit, the checked ones are variable, the others

are fixed. Center, Rho-, Rho+, Conv, ADamp, TRF, and Tofoff are respectively the

central frequency (Hz) of the MIKE function, the initial radius (mm) of the magetron

motion, initial radius (mm) of the reduced cyclotron motion, the conversion number

from magnetron motion to reduced cyclotron motion, the damping coefficient (Hz),

the time length (s) of the quadrupole excitation and the base-line time of flight (µs).

The duration of the quadrupole excitation for 11Be+ is 0.498 s.

Figure 5.5: Penning trap axial potential.

Figure 5.11(a) shows the TOF measurement for the reference ion 6Li+. After

MIKE function fitting, a file, run033066 eva.ft2, will be created. The file includes
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Figure 5.6: EVA control.

Figure 5.7: Counts vs TOF for run
033066.

Figure 5.8: Counts vs TOF for run
033072.
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Figure 5.9: The spectrum of ion num-
ber per shot for run 033066.

Figure 5.10: The spectrum of ion num-
ber per shot for run 033072.

the center frequency, error of the center frequency, and measurement time infor-

mation, which are needed for the ion mass calculation. Figure 5.11(b) shows an-

other TOF measurement for the reference ion 6Li+. Figure 5.12 (a), Figure 5.12

(b), and Figure 5.12 (c) show TOF measurements for the ion 11Be+. These mea-

surements were made in a specific order: the TOF measurements of the ion 11Be+

were made between the two TOF measurements of the reference ion 6Li+. In the

same way as run033066 eva.ft2, after fitting, run033074 eva.ft2, run033069 eva.ft2,

run033070 eva.ft2 and run033072 eva.ft2 were created.

After the .ft2 files are created by EVA, cyclotron frequencies γi
ref and γi, and their

errors σ(γi
ref ) and σ(γi) are all included in the files. The program SOMA (Simple

Online Mass Analysis) loads these files and calculates the ion mass and the uncertainty

according to Eq. 5.7 and Eq. 5.8.

The SOMA window is shown in Figure 5.13. Two reference measurement files of
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Figure 5.11: (a) TOF of reference ion 6Li+ for run 033066. (b) TOF of reference ion
6Li+ for run 033074.

6Li+ as a calibration and three ion TOF measurement files of 11Be+ are entered for

our analysis. The electron binding energies for Li and Be were taken as 5.391719 eV

and 9.3227 eV, respectively. Systematic effects have to be considered: The fractional

change of the magnetic field with time which was determined to be −2 × 10−9 per

hour for TITAN magnet and additional miscellaneous systematic errors, estimated

to be about 5 × 10−8 for TITAN at this stage [116]. More details about SOMA are

described in reference [41].

With this analysis, the mass excess of 11Be is determined to be 20176.936(0.531)

keV compared to the old value 20174(7) keV [28], and is shown in Figure 5.14. The

Birge ratio of 2.364 indicates that further studies of systematic errors are needed.

Nevertheless, this already constitutes an improvement of about one order of magni-

tude over the AME03 value.
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Figure 5.12: (a) TOF of ion 11Be+ for run 033069. (b) TOF of ion 11Be+ for run
033070. (c) TOF of ion 11Be+ for run 033072.
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Figure 5.13: SOMA window for loading files.

Figure 5.14: SOMA window for results.



108

Chapter 6

SUMMARY AND OUTLOOK

We have designed a cooler ion trap for the TITAN project. Electron and proton

cooling were investigated in detail. For proton cooling under the conditions of proton

density = 108 cm−3, proton number = 108, initial proton temperature = 1 eV, number

of HCI = 103, and initial energy of HCI = 500 eV/q, in proton cooling of ions such

as C6+, Fe23+, Kr36+ and U89+, the cooling time is about 0.15 s - 2.3 s depending on

the ion. For electron cooling under the conditions of electron density = 107 cm−3,

electron number = 107, initial electron temperature = 300 K (ambient temperature),

number of HCI = 103, initial energy of HCI = 500 eV/q, in electron cooling of ions

such as C6+, Fe23+, Kr36+ and U89+, the cooling time is about 0.24 s - 0.35 s depending

on the ion. Compared to electron cooling of ions, more protons are needed to cool

highly charged ions to the same energy. This technique has not been demonstrated

yet, and it remains to be seen whether sufficiently dense samples of cold protons

can be trapped. The effects of electron-ion recombination in electron cooling have

been modeled and we find that there is a time window during which effective cooling

takes place but little recombination. The initially hot HCI first heat up the electrons,

strongly suppressing recombination, which only sets in once the HCI have cooled
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down to well below 1 eV/q. This creates an opportunity to separate the species

before charge-state changes set in. Electron cooling has been established for anti-

hydrogen production and the prospects for extending it to highly charged ions look

promising.

A method has been developed to design arbitrary harmonic or nested well poten-

tials with a 28-electrode, cylindrical Penning trap. This will allow great flexibility to

investigate different scenarios with protons and electrons.

Efficient transport of charged particles through a strong magnetic field gradient

without pick-up of radial energy requires a careful design of the injection and ejection

sections. Extensive simulations of the injection of highly charged ions of keV/q energy

into a trap with high magnetic field, show that injection of highly charged ions with a

final energy of a few hundred eV/q can readily be achieved with 100% efficiency. They

are suitable for further electron cooling or proton cooling. Highly-efficient injection

of electrons is also achieved as they can have sufficiently high energy (few hundred

eV). Once they are in the trap, they can self-cool via synchrotron radiation. Most

problematic is the injection of protons, as they must not have more than 10-20 eV of

kinetic energy once they arrive in the trap, as they cannot radiate away energy. We

have found a geometry where 80% of the protons with emittance of about 10π mm

mrad can be injected into the trap region, with a final proton energy of about 16 eV.

Based on these investigations, a cooler trap was designed and is ready for submis-

sion to the TRIUMF design shop. Assembly is anticipated early in 2009. The 7 Tesla
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magnet has been delivered and runs smoothly.

TITAN has started taking data with singly-charged ions. We have measured

the mass of the short-lived halo nucleus 11Be. Its mass excess is determined to be

20176.936(0.531) keV, an order of magnitude more accurate than the AME03 value.

An ion source providing test beams for the TITAN EBIT and the cooler trap

has been constructed (see Appendix F). We characterized the source and found a

favorable emittance of less than 10π mm mrad.
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Chapter 7

APPENDIX

7.1 Appendix A: Axial force depending on a magnetic gradient

When an ion moves in a magnetic field [117], the motion perpendicular to the magnetic

field can be given by

m
υ2
⊥
ρ

= qυ⊥B, (7.1)

where B is the axial magnetic field, υ⊥ is the velocity component perpendicular to

the magnetic field, and ρ is the radius of curvature. From Eq. 7.1, the radius of

curvature is given by

ρ =
mυ⊥
qB

. (7.2)

The circular motion frequency ωc is given by

ωc =
υ⊥
ρ

. (7.3)

The ion’s magnetic moment, which is equal to the current times the area, is given by

µ = IA, (7.4)

where

I =
q

T
=

q2B

2πm
(7.5)
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and

A = πρ2 = π(
mυ⊥
qB

)2. (7.6)

Then we can get

µ =
mυ2

⊥
2B

=
Er

B
. (7.7)

From Maxwell’s equation

1 · B = 0, (7.8)

we have

1 · B =
1

ρ

∂(ρBρ)

∂ρ
+

∂Bz

∂z
= 0. (7.9)

From Eq. 7.9, then we can get

Bρ = −1

2
(
∂Bz

∂z
)ρ, (7.10)

from Eq. 7.10, we have

Bx = −1

2
(
∂Bz

∂z
)x (7.11)

and

By = −1

2
(
∂Bz

∂z
)y. (7.12)

Parallel motion is given by

m
dυz

dt
= Fz = q[υxBy − υyBx]. (7.13)

So we have

Fz = q[υxBy − υyBx], (7.14)
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where

x = ρsinωct, (7.15)

y = ρcosωct, (7.16)

υx = ωcρcosωct, (7.17)

υy = −ωcρsinωct, (7.18)

from above, we can get

Fz = −∂Bz

∂z
(
q

2
ωcρ

2), (7.19)

From Eq. 7.2, Eq. 7.3, and Eq. 7.7, the final expression for the axial force is

Fz = −µ
∂Bz

∂z
= −Er

B

∂Bz

∂z
, (7.20)

where Er = 1
2mυ2

⊥.

7.2 Appendix B: Geometry file for simulation of time of flight

pa_define(1067,73,73,planar,non_mirror)
locate(,,,.25) ;z and y center 1/4 scale
{
locate(182,144,144)
{
e(1) ;first quarter
{
rotate_fill(90){within{hyperbola(0,0,48.6,60)}

notin{locate(0,8,0,1,0,0,0){hyperbola(0,0,48.6,60)}}
}

}
locate(0,0,0,1,0,0,90)
{
e(2) ;second quarter

{
rotate_fill(90){within{hyperbola(0,0,48.6,60)}

notin{locate(0,8,0,1,0,0,0){hyperbola(0,0,48.6,60)}}
}
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}
}

locate(0,0,0,1,0,0,180)
{
e(3) ;third quarter

{
rotate_fill(90){within{hyperbola(0,0,48.6,60)}

notin{locate(0,8,0,1,0,0,0){hyperbola(0,0,48.6,60)}}
}

}
}

locate(0,0,0,1,0,0,270)
{
e(4) ;fourth quarter

{
rotate_fill(90){within{hyperbola(0,0,48.6,60)}

notin{locate(0,8,0,1,0,0,0){hyperbola(0,0,48.6,60)}}
}

}
}

e(5)
{ ;draw left end cap x hyperbola
rotate_fill()
{ ;shift left 0 mm
within{locate(0,,,,,90){hyperbola(0,0,60,48.6)}}

notin{locate(0,,,,,90){locate(0,8,0,1,0,0,0){hyperbola(0,0,60,48.6)}}}
notin{box(0,-288,4268,288)}
}
}
e(6)

{ ;draw right end cap x hyperbola
rotate_fill()
{ ;shift right 0 mm
within{locate(0,,,,,90){hyperbola(0,0,60,48.6)}}

notin{locate(0,,,,,90){locate(0,-8,0,1,0,0,0){hyperbola(0,0,60,48.6)}}}
notin{box(-182,-288,0,288)}

notin{box(188,-288,4268,288)}
}
}

n(0)
{ ;drill hole through endcaps
rotate_fill(){within{box(-182,0,2800,8)}}
}
}
}
locate(65,36,36)
{
Electrode(7) {
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rotate_fill(){Within{Box(30,8,161,10)}}
}
;drift tube 2 (horn)
Electrode(8) {
rotate_fill(){Within{Polyline(166,8,166,10,451,27,451,25,166,8)}}
}
;drift tube 3 (EL’s drift tube)
Electrode(9) {
rotate_fill(){Within{Box(456,25,500,27)}}
}
;drift tube 4 (Einzel Lens)
Electrode(10) {
rotate_fill(){Within{Box(505,25,550,27)}}
}
;drift tube 5 (EL’s drift tube)
Electrode(11) {
rotate_fill(){Within{Box(555,25,668,27)}}
}
;splat plate (MCP)
Electrode(12) {
rotate_fill(){Within{Box(678,0,1000,27)}}
}
}

7.3 Appendix C: User program for simulation of time of flight

; This PRG file was automatically generated from SL source code
; using the SIS Simplified SIMION Compiler (SL) 1.0.1-2004-01-12.
; WARNING: This file will be overwritten if you recompile.

; adjustable Voltage = 0.025
DEFA voltage 0.025
;
; adjustable diVoltage = 0.8
DEFA divoltage 0.8
;
; adjustable omega = 5681572.30470284974294
DEFA omega 5681572.30470284974294
;
; adjustable omegaminus = 1711.247714
DEFA omegaminus 1711.247714
;
; adjustable theta = 0.0
DEFA theta 0.0
;
; adjustable number_step = 29
DEFA number_step 29
;
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; adjustable timeset = 400000
DEFA timeset 400000
;
; adjustable omegastep = 3.14159265358979
DEFA omegastep 3.14159265358979
;
; adjustable dipoletime =700
DEFA dipoletime 700
;
; adjustable sss1 = 0
DEFA sss1 0
;
; adjustable sss2 = 0
DEFA sss2 0
;
; adjustable sssss2 = 0.0000001
DEFA sssss2 0.0000001
;
; adjustable ssssss = 0
DEFA ssssss 0
;
; adjustable ringdc = -0.78
DEFA ringdc -0.78
;
; #sub other_actions
; #if Ion_Time_of_Flight >= dipoletime
; #mark()
; #endif
; #endsub
; #sub other_actions
; #if Ion_Time_of_Flight >= timeset+dipoletime
; #print("Adj_Elect01=#", sssss2)
; #print("timestep=# and ssssss=# and ion_px_abs_gu=#",
;Ion_Time_Step, ssssss, ion_px_abs_gu)
; #endif
; #endsub
; sub Fast_Adjust
SEG fast_adjust

; if Ion_Time_of_Flight < dipoletime
RCL dipoletime
RCL ion_time_of_flight
X>=Y
GTO label19__
RLUP
RLUP

; ssint1 = int(omegaminus * Ion_Time_of_Flight/1000000/6.28318530717958)
RCL omegaminus
RCL ion_time_of_flight
*
1000000
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/
6.28318530717958
/
INT
STO ssint1
RLUP
; sss1 = omegaminus * Ion_Time_of_Flight/1000000 - ssint1 *
; 6.28318530717958
RCL omegaminus
RCL ion_time_of_flight
*
1000000
/
RCL ssint1
6.28318530717958
*
-
STO sss1
RLUP
; Adj_Elect01 = ringdc + divoltage * sin( sss1 + theta )
RCL ringdc
RCL divoltage
RCL sss1
RCL theta
+
SIN
*
+
STO adj_elect01
RLUP
; Adj_Elect04 = ringdc - divoltage * sin( sss1 + theta )
RCL ringdc
RCL divoltage
RCL sss1
RCL theta
+
SIN
*
-
STO adj_elect04
RLUP
; Adj_Elect02 = ringdc + divoltage * sin( sss1 + theta )
RCL ringdc
RCL divoltage
RCL sss1
RCL theta
+
SIN
*
+
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STO adj_elect02
RLUP
; Adj_Elect03 = ringdc - divoltage * sin( sss1 + theta )
RCL ringdc
RCL divoltage
RCL sss1
RCL theta
+
SIN
*
-
STO adj_elect03
RLUP

; begin else
GTO label20__
LBL label19__
RLUP
RLUP
LBL label20__
; end if
;
; if Ion_Time_of_Flight >= dipoletime
RCL dipoletime
RCL ion_time_of_flight
X<Y
GTO label27__
RLUP
RLUP

; if Ion_Time_of_Flight < timeset + dipoletime
RCL timeset
RCL dipoletime
+
RCL ion_time_of_flight
X>=Y
GTO label25__
RLUP
RLUP

; ssint2 = int(omega * (Ion_Time_of_Flight-dipoletime)
;/1000000/6.28318530717958)
RCL omega
RCL ion_time_of_flight
RCL dipoletime
-
*
1000000
/
6.28318530717958
/
INT
STO ssint2
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RLUP
; sss2 = omega * (Ion_Time_of_Flight-dipoletime)/1000000 -
; ssint2 * 6.28318530717958
RCL omega
RCL ion_time_of_flight
RCL dipoletime
-
*
1000000
/
RCL ssint2
6.28318530717958
*
-
STO sss2
RLUP
; Adj_Elect01 = ringdc + voltage * sin( sss2 + theta )
RCL ringdc
RCL voltage
RCL sss2
RCL theta
+
SIN
*
+
STO adj_elect01
RLUP
; Adj_Elect04 = ringdc - voltage * sin( sss2 + theta )
RCL ringdc
RCL voltage
RCL sss2
RCL theta
+
SIN
*
-
STO adj_elect04
RLUP
; Adj_Elect02 = ringdc - voltage * sin( sss2 + theta )
RCL ringdc
RCL voltage
RCL sss2
RCL theta
+
SIN
*
-
STO adj_elect02
RLUP
; Adj_Elect03 = ringdc + voltage * sin( sss2 + theta )
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RCL ringdc
RCL voltage
RCL sss2
RCL theta
+
SIN
*
+
STO adj_elect03
RLUP

; begin else
GTO label26__
LBL label25__
RLUP
RLUP

; Adj_Elect06 = -2
2
CHS
STO adj_elect06
RLUP
; Adj_Elect01 = 0
0 STO adj_elect01
RLUP
; Adj_Elect02 = 0
0 STO adj_elect02
RLUP
; Adj_Elect03 = 0
0 STO adj_elect03
RLUP
; Adj_Elect04 = 0
0 STO adj_elect04
RLUP
; Adj_Elect05 = 2
2 STO adj_elect05
RLUP

LBL label26__
; end if
;

; begin else
GTO label28__
LBL label27__
RLUP
RLUP
LBL label28__
; end if
;
; ssssss = Adj_Elect06
RCL adj_elect06
STO ssssss
RLUP
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EXIT
; end segment
; Sub Tstep_Adjust
SEG tstep_adjust

; if Ion_Time_of_Flight < 0.001
0.001
RCL ion_time_of_flight
X>=Y
GTO label31__
RLUP
RLUP

; Ion_Time_Step = sssss2
RCL sssss2
STO ion_time_step
RLUP

; begin else
GTO label32__
LBL label31__
RLUP
RLUP
LBL label32__
; end if
;
; if abs(Ion_Time_of_Flight - dipoletime) < 1
1
RCL ion_time_of_flight
RCL dipoletime
-
ABS
X>=Y
GTO label35__
RLUP
RLUP

; Ion_Time_Step = sssss2
RCL sssss2
STO ion_time_step
RLUP

; begin else
GTO label36__
LBL label35__
RLUP
RLUP
LBL label36__
; end if
;
; if abs(Ion_Time_of_Flight - timeset - dipoletime) < 1
1
RCL ion_time_of_flight
RCL timeset
-
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RCL dipoletime
-
ABS
X>=Y
GTO label39__
RLUP
RLUP

; Ion_Time_Step = sssss2
RCL sssss2
STO ion_time_step
RLUP

; begin else
GTO label40__
LBL label39__
RLUP
RLUP
LBL label40__
; end if
;
EXIT

; end segment
; sub Terminate
SEG terminate

; Rerun_Flym = 1
1 STO rerun_flym
RLUP
; omega = omega + omegastep
RCL omega
RCL omegastep
+
STO omega
RLUP
; number_step = number_step - 1
RCL number_step
1
-
STO number_step
RLUP
; print("omega=# and sss1=# and sss2=# and sssss2=#",
; omega-omegastep, sss1, sss2, sssss2)
RCL sssss2
RCL sss2
RCL sss1
RCL omega
RCL omegastep
-
MESS ;omega=# and sss1=# and sss2=# and sssss2=#
RLUP
RLUP
RLUP
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RLUP
; if number_step >= 1
1
RCL number_step
X<Y
GTO label43__
RLUP
RLUP

; exit
EXIT

; begin else
GTO label44__
LBL label43__
RLUP
RLUP
LBL label44__
; end if
;
; Rerun_Flym = 0
0 STO rerun_flym
RLUP
EXIT

; end segment

7.4 Appendix D: User program for loading magnetic fields into SIMION

The ion bfieldx gu, ion bfieldy gu, ion bfieldz gu are respectively x, y, and z com-
ponents of magnetic field, they can be set by .prg file which is a user program in
SIMION 7.0 shown below.

; This PRG file was automatically generated from SL source code
; using the SIS Simplified SIMION Compiler (SL) 1.0.1-2004-01-12.
; WARNING: This file will be overwritten if you recompile.
; # Define a field from a data file.
; # (instance scaling 1 mm/gu)
; static x_size = 2740
DEFS x_size 2740
; static y_size = 100
DEFS y_size 100
; static grid_size = 1
DEFS grid_size 1
; # Field data file.
; # bx, by; 2740x by 100y array; first point is 0,0;
; # scan lines in x then y every grid_size.
; adjustable[548001] bfield # 548001 = 2740 * 100 * 2 + 1
ADEFA bfield 548001
; # 548001 = 2740 * 100 * 2 + 1
; adjustable field_loaded = 0
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DEFA field_loaded 0
; #shift magnetic field in x direction
; adjustable magnetshift= 0
DEFA magnetshift 0
; sub mfield_adjust
SEG mfield_adjust

; # load field from file
; if field_loaded == 0
0
RCL field_loaded
X!=Y
GTO label19__
RLUP
RLUP

; array_load(bfield, "7teslamagneticfield.dat")
ARRAY_LOAD bfield ;"7teslamagneticfield.dat"
; field_loaded = 1
1 STO field_loaded
RLUP

; begin else
GTO label20__
LBL label19__
RLUP
RLUP
LBL label20__
; end if
; # assume initially that fields are zero
; ion_bfieldx_gu = 0
0 STO ion_bfieldx_gu
RLUP
; ion_bfieldy_gu = 0
0 STO ion_bfieldy_gu
RLUP
; ion_bfieldz_gu = 0
0 STO ion_bfieldz_gu
RLUP
; # exit if ion beyond data array limits
; if ion_px_abs_gu > (x_size - 2) * grid_size
RCL x_size
2
-
RCL grid_size
*
RCL ion_px_abs_gu
X<=Y
GTO label23__
RLUP
RLUP

; exit
EXIT
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; begin else
GTO label24__
LBL label23__
RLUP
RLUP
LBL label24__
; end if
; if ion_py_abs_gu > (y_size - 2) * grid_size
RCL y_size
2
-
RCL grid_size
*
RCL ion_py_abs_gu
X<=Y
GTO label27__
RLUP
RLUP

; exit
EXIT

; begin else
GTO label28__
LBL label27__
RLUP
RLUP
LBL label28__
; end if
;
; if magnetshift>=0
0
RCL magnetshift
X<Y
GTO label39__
RLUP
RLUP

; if ion_px_abs_gu >= magnetshift
RCL magnetshift
RCL ion_px_abs_gu
X<Y
GTO label33__
RLUP
RLUP

; x = (ion_px_abs_gu-magnetshift) / grid_size # convert to data
RCL ion_px_abs_gu # array spacings
RCL magnetshift
-
RCL grid_size
/
STO x
RLUP
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; xint = int(x) # convert to integer and fraction components
RCL x
INT
STO xint
RLUP
; xfrac = frac(x)
RCL x
FRAC
STO xfrac
RLUP
; xlfrac = 1 - xfrac
1
RCL xfrac
-
STO xlfrac
RLUP

; begin else
GTO label34__
LBL label33__
RLUP
RLUP

; x = (magnetshift-ion_px_abs_gu) / grid_size # convert to data
RCL magnetshift # array spacings
RCL ion_px_abs_gu
-
RCL grid_size
/
STO x
RLUP
; xint = int(x) # convert to integer and fraction components
RCL x
INT
STO xint
RLUP
; xfrac = frac(x)
RCL x
FRAC
STO xfrac
RLUP
; xlfrac = 1 - xfrac
1
RCL xfrac
-
STO xlfrac
RLUP

LBL label34__
; end if

; begin else
GTO label40__
LBL label39__
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RLUP
RLUP

; if (ion_px_abs_gu-magnetshift)>2738
2738
RCL ion_px_abs_gu
RCL magnetshift
-
X<=Y
GTO label37__
RLUP
RLUP

; x=2738
2738 STO x
RLUP
; xint = int(x) # convert to integer and fraction components
RCL x
INT
STO xint
RLUP
; xfrac = frac(x)
RCL x
FRAC
STO xfrac
RLUP
; xlfrac = 1 - xfrac
1
RCL xfrac
-
STO xlfrac
RLUP

; begin else
GTO label38__
LBL label37__
RLUP
RLUP

; x = (ion_px_abs_gu-magnetshift) / grid_size # convert to data
RCL ion_px_abs_gu # array spacings
RCL magnetshift
-
RCL grid_size
/
STO x
RLUP
; xint = int(x) # convert to integer and fraction components
RCL x
INT
STO xint
RLUP
; xfrac = frac(x)
RCL x
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FRAC
STO xfrac
RLUP
; xlfrac = 1 - xfrac
1
RCL xfrac
-
STO xlfrac
RLUP

LBL label38__
; end if
;

LBL label40__
; end if
;
; y = ion_py_abs_gu / grid_size # convert to data array spacings
RCL ion_py_abs_gu
RCL grid_size
/
STO y
RLUP
; yint = int(y) # convert to integer and fraction components
RCL y
INT
STO yint
RLUP
; yfrac = frac(y)
RCL y
FRAC
STO yfrac
RLUP
; ylfrac = 1 - yfrac
1
RCL yfrac
-
STO ylfrac
RLUP
;
; idx = yint * x_size + xint # offset to lower-left (LL) corner point
RCL yint
RCL x_size
*
RCL xint
+
STO idx
RLUP
; llnbx = idx*2 + 1 # index of LL corner of bx
RCL idx
2
*



129

1
+
STO llnbx
RLUP
; llnby = idx*2 + 2 # index of LL corner of by
RCL idx
2
*
2
+
STO llnby
RLUP
;
; # calculate ion’s B_x field by linear interpolation
; ion_bfieldx_gu =
RCL llnbx
ARCL bfield
RCL xlfrac
*
RCL ylfrac
*
RCL llnbx
2
+
ARCL bfield
RCL xfrac
*
RCL ylfrac
*
+
RCL llnbx
RCL x_size
2
*
+
ARCL bfield
RCL xlfrac
*
RCL yfrac
*
+
RCL llnbx
RCL x_size
2
*
+
2
+
ARCL bfield
RCL xfrac
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*
RCL yfrac
*
+
STO ion_bfieldx_gu
RLUP
;
; # calculate ion’s B_r field by linear interpolation
; bfieldr =
RCL llnby
ARCL bfield
RCL xlfrac
*
RCL ylfrac
*
RCL llnby
2
+
ARCL bfield
RCL xfrac
*
RCL ylfrac
*
+
RCL llnby
RCL x_size
2
*
+
ARCL bfield
RCL xlfrac
*
RCL yfrac
*
+
RCL llnby
RCL x_size
2
*
+
2
+
ARCL bfield
RCL xfrac
*
RCL yfrac
*
+
STO bfieldr
RLUP
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;
; # set field
; (radius, theta) = rect_to_polar(ion_py_gu, ion_pz_gu)
RCL ion_pz_gu
RCL ion_py_gu
RECT_TO_POLAR
STO radius
RLUP
STO theta
RLUP
; radius = bfieldr
RCL bfieldr
STO radius
RLUP
; (ion_bfieldy_gu, ion_bfieldz_gu) = polar_to_rect(radius, theta)
RCL theta
RCL radius
POLAR_TO_RECT
STO ion_bfieldy_gu
RLUP
STO ion_bfieldz_gu
RLUP
EXIT

; end segment

7.5 Appendix E: Ion or proton injection geometry

pa_define(2740,100,1,cylindrical,y_mirror)
e(1)

{
fill{within{box(1,19,14,22)}}
}

e(2)
{
fill{within{box(16,19,29,22)}}

}
e(3)

{
fill{within{box(31,19,44,22)}}

}
e(4)

{
fill{within{box(46,19,59,22)}}

}
e(5)

{
fill{within{box(61,19,74,22)}}

}
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e(6)
{

fill{within{box(76,19,89,22)}}
}

e(7)
{
fill{within{box(91,19,104,22)}}

}
e(8)

{
fill{within{box(106,19,119,22)}}

}
e(9)

{
fill{within{box(121,19,134,22)}}

}
e(10)

{
fill{within{box(136,19,149,22)}}

}
e(11)

{
fill{within{box(151,19,164,22)}}

}
e(12)

{
fill{within{box(166,19,179,22)}}

}
e(13)

{
fill{within{box(181,19,194,22)}}
}

e(14)
{
fill{within{box(196,19,209,22)}}

}
e(15)

{
fill{within{box(211,19,554,22)}}

}
locate(900,0,0,1)

{
e(16){

fill{
within{box(0,10,1,61)}
within{box(0,60,100,61)}
}

}
e(17){
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fill{within{box(120,60,220,61)}}
}

e(18){

fill{
within{box(240,60,340,61)}
within{box(340,10,341,61)}
}

}
e(19){

fill{
within{box(1140,10,1141,41)}
within{box(1140,40,1200,41)}
}

}
e(20){

fill{within{box(1210,40,1270,41)}}
}

e(21){

fill{
within{box(1280,40,1340,41)}
within{box(1340,10,1341,41)}
}

}
}

e(22){
fill{within{box(0,97,2739,99)}}
}

7.6 Appendix F: Ion source

We set up an ion system at TRIUMF in Vancouver, and used it to produce the test

beam for the electron beam ion trap and the cooler trap. The ion source is shown in

Figure 7.1. The ion beam emittance is measured by an emittance meter [118] which is

shown in Figure 7.2 and 7.3. It mainly consists of a pair of electric deflection plates,

a front slit and a rear slit. Ions enter the electric field region from the front slit and
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go through the rear slit. The initial angle is given by

θ ≈ V

φ

L

4g
, (7.21)

where V is the deflection voltage, qφ gives the ion energy determined by the ion source

floating voltage, and L (2.75 in) and g (0.16 inch) are the length and distance of the

deflection planes respectively.

Figure 7.1: Ion source.

The angular resolution is given by

)θ =
±s

D
, (7.22)

where s is the width of the front and rear slits, which can be changed from 0.001−0.01

inch, and D is the distance between the front and rear slits. From Eq. 7.22, the

angular resolution that can be reached is 0.35 mrad.
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Figure 7.2: Emittance meter.
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Figure 7.3: Mechanical drawing of the emittance meter.

Figure 7.4 shows the xenon beam emittance measurement result. Initially, the

vacuum was 1.7×10−7 Torr. Once xenon gas was let in, the vacuum rose to 8.2×10−7

Torr.

Figure 7.4 shows the hydrogen beam emittance measurement result, the vacuum

is 4.5×10−7 Torr near ion source before gas was let in. Once hydrogen was admitted,

the vacuum became worse. The vacuum for this scan was about 1.9× 10−5 Torr.

The measured beam emittances were less than 10 π mm mrad, sufficient for use

with the EBIT and the cooler trap.
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xenon

hydrogen

Figure 7.4: Xe beam emittance and hydrogen beam emittance, the unit of measured
current is nA.
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J. Dechargé, Mean-field description of ground-state properties of drip-line nuclei:

Pairing and continuum effects, Phys. Rev. C 53, 2809(1996).

[10] F. Tondeur, S. Goriely, J. M. Pearson, and M. Onsi, Towards a Hartree-Fock

mass formula, Phys. Rev. C 62, 024308 (2000).

[11] W. Satula, D. J. Dean, J. Gary, S. Mizutori, W. Nazarewicz, On the origin of

the Wigner energy, Phys. Lett. B 407 103(1997).

[12] R. R. Chasman, n-p pairing-diagonal matrix elements: Wigner energy, symmetry

energy and spectroscopy, Phys. Lett. B 577, 47(2003).

[13] P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys.

37, 193(1996).

[14] D. Lunney, International symposium nuclei in the cosmos - V, Volos, Greece,

July 6-11, 1998.

[15] Nicola Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10,

531(1963).



140

[16] Makoto Kobayashi, Toshihide Maskawa, CP-violation in the renormalizable the-

ory of weak interaction, Prog. Theor. Phys. 49, 652(1973).

[17] E. Fermi, Versuch einer Theorie der beta-Strahlen. I., Z. Phys. 88, 161(1934).

[18] C. A. Bertulani, H. Schechter, Introduction to nuclear physics, Nova Science

Publishers, Inc., New York, 2002.

[19] I. S. Towner, J. C. Hardy, The evaluation of Vud, experiment and theory, J. Phys.

G: Nucl. Part. Phys. 29, 197(2003).

[20] J. C. Hardy, I. S. Towner, Superallowed 0+ → 0+ nuclear β decays: A critical

survey with tests of the conserved vector current hypothesis and the standard

model, Phys. Rev. C71, 055501(2005).

[21] I. S. Towner, J. C. Hardy, Calculated corrections to superallowed Fermi β de-

cay: New evaluation of the nuclear-structure-dependent terms, Phys. Rev. C66,

035501(2002).

[22] Hartmut Abele, The standard model and the neutron β-decay, Nucl. Instrum.

Methods A 440, 499(2000).

[23] Hendrik Schatz, The importance of nuclear masses in the astrophysical rp-

process, astro-ph/0607625, 2006.



141

[24] Karl-Ludwig Kratz, Bernd Pfeiffer, Friedrich-Karl Thielemann and William B.

Walters, Nuclear structure studies at ISOLDE and their impact on the astro-

physical r-process, Hyperfine Interactions 129, 185(2000).

[25] H. Geissel and G. Münzenberg, Secondary exotic nuclear beams, Annu. Rev.

Nucl. Part. Sci. 45, 163(1995).

[26] Jason Allan Clark, Investigating the astrophysical rp-process through atomic

mass measurements, PhD thesis, University of Manitoba (2005).
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