

Electron capture branching ratio measurements for double β decay experiments at TITAN-TRIUMF

T. Brunner^{1,2}, C. Andreoiu^{1,3}, M. Brodeur^{1,4}, P. Delheij¹, J. Dilling^{1,4}, S. Ettenauer^{1,4}, D. Frekers⁵, A. Gallant^{1,4}, R. Krücken², A. Lapierre¹, R. Ringle¹ and the TITAN-EC collaboration

¹TRIUMF, Vancouver ²TUM, München ³SFU, Vancouver ⁴UBC, Vancouver ⁵Universität Münster

Physics beyond the Standard Model

- Indicate that the neutrino is a massive particle [1]
- Experiments: SNO, SuperK, T2K

Absolute neutrino mass:

- Effective mass for degenerated neutrinos from ³He decay experiments $m_{ve}^{2} = \sum_{i} |U_{ei}|^{2} m_{i}^{2}$ [2]
- Astrophysical limits
- $\beta\beta$ decay experiments

 $2\nu\beta\beta$ decay

neasurement

The $0\nu\beta\beta$ matrix element $M_{0\nu}$

• Helmholtz coil geometry allows visible access to trapped ions

- Up to 7 X-ray detectors can be installed radially around trap to detect X-rays following an electron capture (solid angle $\sim 2.1\%$)

Cooler & Buncher

- A β detector at the trap exit is used to monitor the number of ions stored inside the trap
- Spatial separation of β and X-ray detection due to 6T B-field

LeGe X-ray detector

 \Rightarrow contamination and bremsstrahlungs free measurement of EC-BR

Schematic of the trap and the detector assembly along z axis. The X-ray detectors are positioned perpendicular to the ion beam, the β -detector is situated at the exit of the trap.

Measurement procedure

Storage of ions and observation of β s and X-rays following EC

- Identify these X-rays from EC • Observe electrons from β decays
- Use of Ge and LeGe detector

Signature EC(¹⁰⁷Cd)

Ge detector

• Only one detector

82

• Spectrum of 69.19 min run time

Energy [keV]

Analysis of ¹⁰⁷In spectra: Low energy Ge detector **Signature**¹⁰⁷**In decay** Signature EC(¹⁰⁷In) BGND ¹⁰⁷In bear BGND ¹⁰⁷ln Energy [keV] • Spectra of 192.82 min run time • Clear signature of electron capture of ¹⁰⁷In and ¹⁰⁷Cd • Contamination of trap with ¹⁰⁷Cd after

 β^+ decay

Signature EC(¹⁰⁷Cd) Signature EC(¹⁰⁷In)

EC ~ 99%

107 \Lambda Ag

The detector can be installed inside the vacuum as close as 10 cm to the trap center. The magnetic field of ~2T at the detector position has no influence on the signal.

Electron Capture BR program at TITAN

 $\beta\beta$ decay candidates that are under investigation in experiments such as Majorana, EXO, COBRA, CUORE and others [12]:

¹⁰⁰Mo : ¹⁰⁰Tc(EC) $[1^+ \rightarrow 0^+, T_{\frac{1}{2}} = 15.8s]$ K_{a½} = 17.5keV ¹¹⁰Pd : ¹¹⁰Ag(EC) $[1^+ \rightarrow 0^+, T_{\frac{1}{2}} = 24.6s]$ K_{α¹/₂} = 21.2keV ¹¹⁴Cd : ¹¹⁴In(EC) $[1^+ \rightarrow 0^+, T_{\frac{1}{2}} = 71.9s]$ $K_{\alpha \frac{1}{2}} = 25.3 \text{keV}$ ¹¹⁶Cd : ¹¹⁶In(EC) $[1^+ \rightarrow 0^+, T_{\frac{1}{12}} = 14.1s]$ $K_{\alpha \frac{1}{2}} = 25.3 \text{keV}$ ⁸²Se : ^{82m}Br(EC) $[2^{-} \rightarrow 0^{+}, T_{\frac{1}{2}} = 6.1 \text{min}]$ K_{α½} = 11.2keV ¹²⁸Te : ¹²⁸I(EC) $[1^+ \rightarrow 0^+, T_{\frac{1}{2}} = 25.0 \text{min}]$ $K_{a^{1/2}} = 27.5 \text{keV}$ ⁷⁶Ge : ⁷⁶As(EC) $[2^{-} \rightarrow 0^{+}, T_{\frac{1}{2}} = 26.2h]$ $K_{a\frac{1}{2}} = 9.9 \text{keV}$

Run plan for ¹⁰⁰Tc

- Accumulating 10 spills in trap \rightarrow 100000 ions in trap
- Storage time of 15s calculates to 50000 β decays ~0.9 EC decays $5.6 \bullet 10^{-3}$ detected EC in 15s
- A 10% accuracy needs 100 detected events: ~17.700 trap fills \rightarrow 74h

TRIUMF Research Proposal E1066

 \rightarrow 14h 20% overhead

 \rightarrow 88h Total estimated time

• Energy resolution worse than LeGe • Solid angle of 0.25%

 \Rightarrow 0.02% solid angle

• Clear signature of ¹⁰⁷In decay

Peak Intensity [%] this work 23 keV k_{α} 32.1 ± 8.7 literature [13] 40.5 ± 2.8 this work $26 \text{ keV } \text{k}_{\text{R}}$ 6.8 ± 4.4 literature [13] 7.84 ± 0.67

 \Rightarrow BR(EC) = (53 ± 15)% this work literature = $(64 \pm 3)\%$ [13]

For the future:

• Apply sideband cooling to increase the number of ions inside the trap

[13] http://www.nndc.bnl.gov

• Test anti-coincidence during an experiment with ¹²⁶Cs in July

• First EC-BR measurement for $\beta\beta$ decay matrix elements in November

FIRST observation of an electron capture of isotopes stored in a **Penning trap**