DF

Electron capture branching ratios for the odd-odd intermediate nuclei in $\beta\beta$ decay using TITAN

Objectives:

- experimental determination of **nuclear matrix elements** for $2\nu\beta\beta$ decay and $0\nu\beta\beta$ decay
- test theory and improve theoretical prediction
- expose deficiencies in theory
- allow more reliable extraction of **Majorana neutrino mass** from $0\nu\beta\beta$ decay by using mostly experimental information

•Technique:

measurement of K-shell EC X-rays using radioactive ions (i.e. intermediate nuclei) trapped in an ion trap (EBIT)

•Advantages:

- no backing material, i.e. no absorption
- high-purity sample
- background-free situation, i.e. precision and sensitivity

Theoretical situation

Theory claims:

- 1. both decay modes can be described with **ONE** parameter only, g_{pp}, which is the p-p part of the protonneutron two-body interaction
- 2. g_{pp} is fixed to the experimental $2\nu\beta\beta$ decay half life ($g_{pp} \sim 1$)
- 3. there are no intermediate cross checks with experiment
- 4. $2\nu\beta\beta$ decay is **sensitive** to g_{pp} , $0\nu\beta\beta$ decay is **insensitive** to g_{pp}
- 5. nuclear structure remains hidden
- 6. Theory: **trust us!!**

sensitivity to 1+ excitations

Summarizing the theory

The use of $g_{pp}(\beta\beta) \sim 1.0$ reproduces the $2\nu\beta\beta$ decay half-life via a conspiracy of two errors: a much too large EC matrix element (too fast EC decay) is compensated by a much too small β^- matrix element (too slow β^- decay).

Discrepancies of 1 – 2 orders of magnitude are possible

The loose end: EC rats are badly known, or not known at all

IKP Münster

Single state dominance and its oddities the conjecture

the oddity

Case	B(GT⁻)	B(GT ⁺)	M (DGT)	$T_{1/2}^{(2v)}$
				[10 ^{̈́19̄} y]
direct	-	-	0.064	3.3
13				
(°He,t)/β ⁻	0.032	0.256	0.025	22
ΕC / β ⁻	0.47	0.256	0.09	1.5
theory	1.165	0.065	0.07	2.4
(³ He, t)/(d, ² He)	0.322 [*]	0.436*	0.058	4.0
			7	

Experiment for EC using EBIT

holding 7 ports for X-ray detectors

Experiment for EC using EBIT

Electrons from β -decay (10⁶ times more intense than EC) are giuded away to the exit of the trap and can be used for monitoring by a channeltron

measurements of EC branch from 1956 (log ft= 4.85) 2+ excited state at 558 keV can be reached

2 hour!! /10% measurement (***)

Important measurements also because of the present conflicting experimental values.

1 – 13 shifts depending on value of $\boldsymbol{\epsilon}$

(****)

Deferred!!

if log ft (EC) = log ft(β^-) ~8.4 $\epsilon \sim 10^{-8} - 10^{-9}$

Can be used a standard for calibration

branching has been measured with high precision (0.8%)

20 shifts for 5% measurement

• Improvements:

- Increase solid angle by factor 2.25
- Increase load from 10⁵ to 5x10⁶ factor 50

Beam time 200 – 400 hours (25 – 50 shifts at 10%)

Presently requested beam time

- \cdot 2 x 6 shifts for tests and commissioning
 - storage capacitiy
 - storage times
 - isobar separation
 - capabilties of measuring absolute values
 - evaluating backgrounds

investments

- 7 high resolution X-ray detectors
 - to be applied for at German DFG