

CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS *Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada*

The TITAN EBIT & Prospects of Experiments with Radioactive Highly Charged lons

A. Lapierre, M. Brodeur, T. Brunner, S. Ettenauer, R. Ringle, J. R. Crespo Lopez-Urrutia, P. Delheij, G. Gwinner, G. Sikler, M. Froese, S. Epp, J. Ullrich, & J. Dilling

TRIUMF, U of BC, UT Munich, U of Manitoba, MPI-K (Heidelberg)

LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

What is TITAN ?

TRIUMF's Ion Trap for Atomic & Nuclear Physics

- -Facility to perform high-precision atomic mass measurements.
- -Main motivations: Mass measurements on short-lived isotopes (level of precision: Δm/m<10⁻⁸)

TITAN Facility

Ion beams from the RFQ can be sent to the Penning trap or the EBIT.

Cooler Penning Trap

TITAN ISAC-TRIUMF

Main purpose: Increase the precision of measurements by phase-space cooling HCI's with low-energy *protons* or *electrons* to 1 eV/q prior to mass measurements.

High-Precision Mass Measurements

ITAN C-TRIUMF

Hyperbolic Penning trap

Time-Of-Flight Ion Cyclotron Resonance:

 TOF of ions extracted onto a MCP after RF excitation of ion motions @ the ion cyclotron frequency.

MCP detector (~1 m away)		<u></u> ₽ℓ - ₽[]	
	- 16	4.50	

The TITAN Penning trap system is now operational

Mass of Halo nuclei (nuclei with orbiting valence nucleons)

He-6	6.01888587(72) u
He-8	8.03393440(16) u
Li-11	11.04372361(69) u
Be-11	11.02166155(62) u

Singly or highly charged ions can be trapped \rightarrow **In-trap decay spectroscopy**:

- $-\beta$'s or α 's guided by the magnetic field & detected by a silicon detector out of the trap.
- Extract the daughters of decaying mother ions after RF cleaning (mother).

An EBIT is and Ion trap that...

- Produces & traps highly charged ions (HCI's) with of a high-current density electron beam.

1) Electrostatic potentials to drift tubes (quadrupole potential. well).

Radially

- 1) Electron beam space charge potential.
- 2) Axial magnetic field (HCI's trapped with no electron beam for ~sec's)

- X-ray spectroscopy
- Visible spectroscopy
- Electron capture recombination

In-trap decay spectroscopy of radioactive ions

LeGe X-ray detector ~ 3 – 100 keV

TITAN EBIT

Twin of the FLASH EBIT (next talk; built at the MPI-K)

Rendered Cut of the TITAN EBIT

The Trap

TITAN-EBIT special feature

8-fold segmented central drift tube:

- Clean ion contaminants with RF field.
- Study the trap content by Ion Cyclotron Resonance.

Retractable Electron Gun

Charge Breeding & Extraction

Since Nov. 2008, we can extract HCI's from the EBIT...

X-ray Spectroscopy

The geometry of the coils (*Helmholtz*) allows visible access to trapped ions for spectroscopy.

LeGe X-ray detector

Charge Breeding of a Radioactive Isotope

TITAN ISAC-TRIUMF

In April 2009, injected & charge bred our first radioactive ion (Na-25) into the EBIT

TITAN ISAC-TRIUMF

He-like O⁶⁺ mass measurement with the TITAN Penning trap

Prospects of Experiments with Radioactive Highly Charged Ions

Outline

- Results of nuclear-decay electron capture measurements in singly charged ions
- Measuring the energy of the 7.5 eV Th-229 isomer
- Nuclear Excitation by Electron Capture (NEEC)

EBIT with **NO** Electron Beam

Program @ TITAN: Electron Capture Branching Ratio Measurements in Singly Charged Ions

Nuclear-decay Electron Capture (EC):

After EC, the daughter emits X-rays, as a result of decays of electrons filling shell vacancies.

EC-BR measured from X-ray yields.

- -EC-BR used to evaluate ββ- and 0vββ-decay nuclear matrix elements *(benchmark theory)*.
- If $0\nu\beta\beta$ decay is observed, such matrix elements can be used to infer the **neutrino mass**.

Candidates for EC-BR measurements:

 $^{82m}Br \rightarrow ^{82}Se$, $^{110}Ag \rightarrow ^{110}Pd$, ^{100}Tc (EC: 0.003%) $\rightarrow ^{100}Mo$

Proof-of-principle experiment: ¹⁰⁷In

Proof-of-principle experiment: ¹⁰⁷In

What we expect to see in X-ray spectra: $\rightarrow K_{\alpha} \& K_{\beta}$ lines in ¹⁰⁷Cd.

Ground sta	ite decay	[,] X-rays	from	EC	(64%)):
------------	-----------	---------------------	------	----	-------	----

E	nergy (keV)	Intensity (%)				
XR l	3.13	3.92 % 17				
XR ka2	22.984	14.1 % 7				
XR kal	23.174	26.4 % 13				
XR kβ3	26.06	2.29 % 11				
XR kβ1	26.095	4.41 % 21				
XR kβ2	26.644	1.14 % 6				

LEGe X-ray detector (~0.02% solid angle)

Low-Energy ²²⁹Th Isomer

²²⁹Th isomer measured @ 7.5 eV \pm 1 eV (*talks tomorrow*) Beck et al. PRL 98 142501 (2007)

Lifetime of the isomer (*neutral* atom) calculated $\sim 10 \, \mu s$ Karpeshin & Trzhaskovskaya PRC 76 054313 (2007)

We could measure precisely the isomer energy with EBIT!

229 89^{.Ac} **PROBLEM:** Isomer would decay in the ISOL target 62.7 m (3/2+) 0.0 before being extracted → Diffusion time ~ ms – s %b=100 $Q_{h} = 1.15 \times 10^{+3}$ **SOLUTION:** Produce & Trap *singly charged*²²⁹Ac **T**_{1/2}~**1** hour ²²⁹Ac decays to ²²⁹Th by β - decay Isomer populated in the ²²⁹Ac decay. (3/2+.5/2.7/2) (3/2+ 5/2 7/2 (5/2+) (5/2+) (7/2)(1/2+)(5/2-) 0.8⁴.0¹.2.6 . o³ s.3 c.0 c.4 (3/2-)(7/2-)(5/2-)9/2+ (7/2+)Some γ transitions 7/2+ (5/2+)populating the isomer... (3/2+)5/2+ 1.14x10⁺³ 229 Eh-(keV) %hlog ft 90Th

keV

7/2+

5/2+

P03240-jab-u-001

Low-Energy ²²⁹Th Isomer

Vacuum ultraviolet (VUV) spectroscopy of singly charged ²²⁹Th

Relative precision $\triangle E/E < 0.01 \rightarrow ~0.1 \text{ eV}$ out of 7.5 eV ?

The lifetime of the isomer in HCI's (hyperfine quenching)

TABLE I. Energies of the hfs levels and mean lifetimes of the M1 transitions to the F=2 (low) state and to the F=3 state (in brackets) for $E_{isom}=10$ eV, and for three charge states of the ²²⁹Th ion.

Ions		H-li	ike	Li-li	ke	Na-like		
State	F	E_F (eV)	au (s)	E_F (eV)	au (s)	E_F (eV)	au (s)	
4>	1	10.12	0.010	10.02	0.72	10.004	8.3	
3>	2upp	9.96	0.007	9.99 0.44		9.997	5.0	
			(0.010)		(0.54)		(6.0)	
$ 2\rangle$	3	0.39	0.065	0.05	36.5	0.015	1.4×10^{3}	
$ 1\rangle$	2low	-0.58		-0.07		-0.020		

K. Pachucki et al. PRC 64, 064301 (2001)

ISAC-TRIUM

Nuclear Excitation by Electron Capture

NEEC

- Free electron is captured into electronic bound state & a nuclear state is simultaneously excited.
- Nuclear state de-excites by IC or γ emission.
- Best atomic systems to observe NEEC are HCI's; nuclear transitions are in the keV range.

Challenging to observe:

- Weak resonance strengths $\sim 10^{-26}$ cm² eV.
- $-\gamma$'s masked by rad. recombination X-rays (same energy).
- IC electrons buried within the e-beam (same energy).

RR is ~10⁴ more likely than NEEC !

K

RR

RR is observable in an EBIT, what about NEEC ?

E-beam current	500 mA	5 A			
E-number density	5x10 ²² e/cm ² /s	5x10 ²³ e/cm ² /s			
He-like ions	~10 ⁶	~107			
Expected count rate	~10 / min	~1000 / min ~ 17 / sec			

7 X-ray detectors $\rightarrow \Omega \sim 2\%$

Nuclear Excitation by Electron Capture

2-level systems are not ideal to observe NEEC

– NEEC γ 's are concealed by RR x-rays

Best option: 3-level systems & detect γ 's

- Short-lived nuclear states → "Strong" strengths
- Isomer excitation \rightarrow "Weak" strengths (small trans. probabilities to GS)
- Exciting from an Isomer \rightarrow Low production yields in the ISOL targets

3-level candidates with short-lived nuclear states: for capture into the L shell of He-like ions

	Element	Z	Mass u	Nucleus Half-life	He-like IP keV	Li-like IP keV	Max. C-S keV	E-beam Energy keV	Upper Level keV	Half-life ns	Inter. Level keV	Half-life ns	Gamma_Utol keV	Gamma_ItoG keV
-	Sm	62	151	90 y	52.73	13.26	35.80	52.57	65.83	0.4	4.82	35.00	61.01	4.821
	Sm	62	151	90 y	52.73	13.26	35.80	56.44	69.70	0.5	4.82	35.00	64.88	4.821
	Dy	66	161	Stable	60.33	15.23	41.11	28.60	43.82	0.83	25.65	29.10	18.15	25.65
	Dy	66	161	Stable	60.33	15.23	41.11	59.34	74.57	3.14	25.65	29.10	48.91	25.65
	Os	76	187	Stable	82.24	20.92	56.47	53.42	74.33	0.02	9.75	2.38	64.58	9.746
	Os	76	187	Stable	82.24	20.92	56.47	54.13	75.04	0.02	9.75	2.38	65.29	9.746
GOC	Pt	78	187	2.35 h	87.15	22.20	59.94	52.37	74.57	0.5	9.27	1.00	65.30	9.27
0	Pt	78	187	2.35 h	87.15	22.20	59.94	52.37	74.57	0.5	25.54	0.70	49.03	25.54

We are looking for other candidates...

23

Nuclear Excitation by Electron Capture

Sources of background:

RIUMF

Summary

TITAN ISAC-TRIUMF

- **X** TITAN facility @ TRIUMF: High-precision mass measurements.
- X 3 traps for in-trap decay spectroscopy of singly and highly charged radioactive ions.
- Solution Control Co
- **×** Future opportunities with the EBIT:
 - Measure the energy (high precision) of the Th-229 isomer.
 - Observe NEEC (high current density & large solid angle).

Members / Collaborators

TITAN Group: Jens Dilling, Paul Delheij, Gerald Gwinner, Alain Lapierre, Maxime Brodeur, Thomas Brunner, Stephan Ettenauer, Aaron Gallant.

Former members: Chris Champagne, Ryan Ringle, Vladimir Ryjkov, Mathew Smith, Zunjian Ke,...

TRIUMF Staff: Melvin Good, Pierre Bricault, Ames Freidhelm, Mathew Pearson, Jens Lassen, Marik Dombsky, Rolf Kietel, Don Dale, Hubert Hui, Kevin Langton, Mike McDonald, Raymond Dube, Tim Stanford, Stuart Austin, Zlatko Bjelic, Daniel Rowbotham, & others

