The neutrino reaction on ⁷¹Ga:

a) new measurement of the neutrino response of ⁷¹Ge from terrestrial v's b) ⁷¹Ge EC Q-value

PI's: D. Frekers, H. Ejiri, V.N. Gavrin, M.N. Harakeh, J. Dilling

Reviewing the issue

Low reaction threshold! \implies Sensitive to pp I v's

Ехр.	source	ratio
GALLEX	⁵¹ Cr-1	0.95 ± 0.11
GALLEX	⁵¹ Cr-2	0.81 ± 0.11
SAGE	⁵¹ Cr	0.95±0.12
SAGE	³⁷ Ar	0.79 ± 0.10
Average	⁵¹ Cr, ³⁷ Ar	0.87 ± 0.05

Origin of the discrepancy?

- Lower detector efficiencies?
- Neutrino cross section?
- Unknown properties of neutrinos?

- <u>Ratio:</u> # of measured ⁷¹Ge atoms
 Normalized to # of calculated atoms
- Average value $\approx 2.5 \sigma$ away from unity

J. Bahcall:

Contribution from excited states: 5.1%

 $\sigma(^{51}\text{Cr}) = \sigma_0(^{51}\text{Cr}) \left| 1 + 0.67 \frac{B_1(\text{GT})}{B_0(\text{GT})} + 0.22 \frac{B_2(\text{GT})}{B_0(\text{GT})} \right|$

 $1/2^{-}$

⁷¹Ga(p,n)⁷¹Ge exp. (Krofcheck, Sugarbaker, Rapaport) **Poor energy resolution!** (≈200 keV)

Gallium experiments with artificial neutrino sources as a tool for investigation of transition to sterile states

V. N. Gavrin,* V. V. Gorbachev,* E. P. Veretenkin,* and B. T. Cleveland*

20 July 2010

We propose to place a very intense source of ⁵¹Cr at the center of a 50-tonne target of gallium metal that is divided into two concentric spherical zones and to measure the neutrino capture rate in each zone. This experiment can set limits on transitions from active to sterile neutrinos with $\Delta m^2 \approx 1 \text{ eV}^2$ with a sensitivity to disappearance of electron neutrinos of a few percent.

Extracting the B(GT)-strength via the ⁷¹Ga(³He,t)⁷¹Ge-reaction @ RCNP

Results

Contribution from the excited states: 7.2 ± 2.0%

- ▶ 175 keV: 2.7 ± 2.0%
- ➢ 500 keV: 4.5 ± 0.35%

as opposed to 5.1 % taken by J. Bahcall

> Discrepancy confirmed/slightly increased

Contributions from the excited states do MOT resolve the discrepancy

What else could contribute?

What about the Q_{EC}-value of ⁷¹Ge? $\sigma_0 \left({}^{51}{
m Cr}
ight) = F(atom) \cdot rac{1}{ft} \ ft \propto Q_{
m EC}^2 \cdot t_{1/2}$

How was the Q_{EC}-value measured before?

All measurements in context of 17 keV v!

- 1. End-point spectrum is sensitive to neutrino mass
- 2. Q-value is determined by end-point energy

Q_{EC}-value only side effect!!

PROBLEMS!

- 1. Lack of precicse knowledge about the end-point spectrum near Q_{EC} -(E(K_a)) \approx 8-10 keV
- 2. Extremely strong sources needed ($\approx 10^{10} 10^{11}$ Bq) (thru (n, γ) activation)
- 3. Use of external source atomic excitations on the end-point energy!
- 4. Pile-up issues
- 5. Background issues after activation?
- 6. Detector efficiencies need to be know precisely!

⁷¹Ge Q_{EC} -value by Lee at al. (1995)

None of the internal bremsstrahlungs (IB)-EC expmts. were aimed at a precise determination of the Q_{EC} -value!!

 $Q_{\rm EC}$ -value: 232.65 ± 0.15 keV

external source \rightarrow effect of atomic X-ray de-excitation on the final spectrum??

⁷¹Ge Q_{EC} -value by DiGrigorio et al. (1993)

 Q_{EC} -value: 232.1 ± 0.1 keV

⁷¹Ge Q_{EC} -value by Zlimen et al. (1991)

Also in context of the 17 keV neutrino; positive report!!

 Q_{EC} -value: 229.0 ± 0.5 keV

⁷¹Ge Q_{EC}-value measurement at TRIUMF's TITAN experiment - <u>NEW</u> <u>approach</u>: mass measurement via cyclotron frequencies

- Trap experiment
- Radioactive beam of ⁷¹Ge
- Mass measurement of ⁷¹Ge and ⁷¹Ga via cyclotron frequencies

TITAN – TRIUMF's Ion Traps for Atomic and Nuclear science

- 1. Radioactive beam provided by ISAC
- 2. Transfer to EBIT (Charge breeding – creating highly charged ions)
- 3. Transfer to Penning trap (frequency determination via TOF measurement)

WESTFÄLISCHE

MÜNSTER

WILHELMS-UNIVERSITÄT

Principle of mass measurement with Penning Traps

- 1. Single ion injection
- 2. Confinement by B-field + electrostatic quadrupole field
- Lorentz force ⇒ oscillation with cyclotron frequency perpendicular to B-field
- 4. Excitation With $v_{RF} = v_C$
- 5. Trap opening & transfer of energy to $E_{kin} \Rightarrow$ TOF-measurement

Ions oscillate with cyclotron frequence

1. HCI's interact with residual gas; i.e. increased damping

2. ion-ion interaction (when more than 1 VESTFÄLISCHE VILHELMS-UNIVERSITÄT ion in trap)

EBIT - Electron-Beam Ion Trap

produces and traps highly charges ions (HCI's) using a high-current (up to 500 mA) e-beam

- Consists of e⁻-gun,
 trap center, e⁻-collector
- injected ions are accelerated towards trap center & compressed by B-field
- Radial confinement by e– beam space charge
- Longitudinally by external field
- Ionisation by intense
 e-beam (500 mA)
- Ions are captured deeper in trap potential with every loss of e-

The electron beam is compressed by a magnetic (Helmholtz) field up to 6T

Creation of highly charged ions (HCI's) by multiple electron impact

Typical TOF-resonances for ⁷¹Ga and ⁷¹Ge

Excitation frequency versus the TOF

Minimum of the resonance corresponds to the cyclotron frequency

- Calculation of atomic mass excess
- Stable nucleus (71 Ga) as reference (m_2)

Double resonance

frequency + 16.821.000 [Hz]

⇒ Q_{EC}-value: 234±1keV (Preliminary!)

Consequences of Q_{EC} -value measurement

- $ft \propto Q_{EC}^2 \cdot T_{1/2}$ \Rightarrow phase space factor for $B_2(GT) \approx 14$ % lower
- $\Rightarrow \sigma_0({}^{51}Cr \nu)$ slightly reduced \Rightarrow **Only slightly** reduced discrepancy

Contribution from excited states: 6.3 %

Conclusion:

Nuclear physics aspect of the v x-section investigated Contribution from excited states: $7.2 \% \pm 2.0 \%$ (5.1 % by Bahcall)

 \Rightarrow slightly amplifies the discrepancy

2. Q_{EC} is close to J. Bahcall value & reduces @ most contrib. from exct. states from 7.2 % to 6.3 %

3. New calculations of phase space factors

the observed discrepancy is NOT due to any unknowns in Nuclear Physics!!

Acknowledgements MANY THANKS TO:

- RCNP facility and members
- D.Frekers
- H.Ejiri
- H.Akimune
- T.Adachi
- B.Bilgier
- B.A.Brown
- B.T.Cleveland
- H.Fujita
- Y.Fujita
- M.Fujiwara
- E.Ganioglu
- V.N.Gavrin
- E.-W.Grewe
- C.J.Guess
- M.N.Harakeh
- K.Hatanaka

- R.Hodak
- C.Iwamoto
- N.T.Khai
- H.C.Kozer
- A.Okamoto
- H.Okamura
- P.P.Povinec
- P.Puppe
- F.Simkovic
- G.Ssoy
- T.Suzuki
- A.Tamii
- J.H.Thies
- J.Van de Walle
- R.G.T.Zegers
- Supported by DFG

Acknowledgements

Many thanks to the TITAN group at TRIUMF!

THANK YOU FOR YOUR ATTENTION!