TITAN Mass Measurement of ¹¹Li (and other halo nuclei)

The weather in Vancouver (according to the tourist board)

The weather in Vancouver (the other 364 days of the year)

Outline

- ISAC @ TRIUMF
- The TITAN experiment
- Penning trap mass spectrometry
- Towards shorter half lives
- Results of ¹¹Li measurement
- Results of other halo nuclei mass measurements

ISAC at TRIUMF

Penning Trap Mass Spectrometry

3D ion confinement: linear magnetic field +quadrupolar electric field

Resulting ion motion: 3 independent eigenmotions $\omega_{+}, \omega_{-}, \omega_{z}$

Application of quadrupolar RF field causes beating between reduced cyclotron and magnetron motions

Extraction through magnetic field converts radial energy to longitudinal energy

$$\omega_{-} < \omega_{z} < \omega_{+}$$
$$\omega_{c} = \omega_{+} + \omega_{-} = \frac{q}{m}B$$

True cyclotron frequency is the sum of radial eigenmotions

Measure TOF to determine the center frequency

Towards Shorter Half Lives

Measurement time scales:

initial magnetron preparationdipolar RF excitation ~ 10 msLorentz steererFREE

Principle: generate electric dipole field in strong magnetic field region to move ions off axis

cyclotron motion excitation (limited by half life)

 $R \approx v_c \cdot T_{rf} = (q/m) \cdot B \cdot T_{rf} \longrightarrow$ buy a bigger magnet (increase B)

buy a bigger magnet (increase B) charge breeding (increase q) different RF excitation scheme (reduce FWHM) Ramsey excitation - S. George *et al.*, PRL **98**, 162501 (2007) Octupolar excitation - R. Ringle et al., IJMS **262**, 33 (2007) S. Eliseev *et al.*, IJMS **262**, 45 (2007)

Penning trap benchmarks

^{6,7}Li mass comparison

Compare to SMILETRAP* values

*14σ deviation of m(⁷Li) from AME03 *Sz. Nagy *et al.*, PRL **96**, 163004 (2006) ⁷Li δm/m ~ 5x10⁻¹⁰

Agreement is observed on the 2(7)x10⁻⁹ level

Mass dependent frequency shifts

mass shift insignificant on the 3(4)x10⁻⁸ level over six mass units

Halo Nuclei

measured with TITAN

••••• proposed

S_{2n} of All Bound Nuclei

slide from D. Lunney

Li Isotope Shifts

altered charge radius, r_c, of ¹¹Li could indicate a perturbed ⁹Li core

R. Sánchez et al., PRL 96, 033002 (2006)

mass shift term (MS) ~ 10 GHz for Li field shift term ~ 0.001 GHz for Li

optical isotope shift measurements provide relative shift
- ^{6,7}Li r_c determined via elastic electron scattering

C.W. de Jager et al., At. Data Nucl. Data Tables 14, 479 (1974)

- mass shift terms calculated by Z.-C. Yan and G.W.F. Drake Z.-C Yan and G.W.F. Drake, PRL **91**, 113004 (2003)

- ¹¹Li mass measurement with $\delta m \le 1 \text{ keV}/c^2$ required to remove it as a source of significant uncertainty

¹¹Li S_{2n} Value

Five previous measurements of S_{2n}(¹¹Li)

- Need a precision of $\delta m \le 5 \text{ keV}/c^2$ to confirm accuracy of Bachelet et al.
- An $S_{2n}(^{11}Li)$ value with 1% uncertainty, $\delta m \le 3 \text{ keV}/c^2$, would provide a solid test for nuclear theory.
- Need a precision of $\delta m \le 1 \text{ keV}/c^2$ for charge radius calculations.

TITAN Mass Measurement of ^{9,11}Li (preliminary)

TITAN Mass Measurement of ^{9,11}Li (preliminary)

TITAN Mass Measurement of ^{9,11}Li (preliminary)

How Big is ⁸He?

P. Mueller et al., PRL 99, 252501 (2007)

How Big is ⁸He?

P. Mueller et al., PRL 99, 252501 (2007)

How Big is ⁸He?

P. Mueller et al., PRL 99, 252501 (2007)

	$^{6}\mathrm{He}$		⁸ He	
	value	error	value	error
Statistical				
Photon counting		0.008		0.032
Probing laser alignment		0.002		0.012
Reference laser drift		0.002		0.024
Systematic				
Probing power shift				0.015
Zeeman shift		0.030		0.045
Nuclear mass		0.015		0.074
Corrections				
Recoil effect	0.110	0.000	0.165	0.000
Nuclear polarization	-0.014	0.003	-0.002	0.001
$\delta \nu_{A,4}^{\rm FS}$ combined	-1.478	0.035	-0.918	0.097

TITAN Mass Measurement of ⁸He (preliminary)

- First direct mass measurement of ⁸He
- H₂ used as buffer gas in RFQ
- Produced with "broken" FEBIAD ion source
- δm ~ 300 eV
- $\Delta m \sim 1.9\sigma$

TITAN Mass Measurement of ¹¹Be (preliminary)

15 - 9 Be(t,p)¹¹Be 10- ${}^{10}\text{Be}(d,p){}^{11}\text{Be}$ M.E. - AME04 [keV] 5 **MISTRAL** • TITAN 0 --5 -⊥ \bot AME03 -10 -15 **Measurements**

 $\delta m/m \sim 7 \times 10^{-9}$ (reduced by a factor of ~ 50)

Measurement

Conclusions & Outlook

- The TITAN mass spectrometer has been commissioned and is capable of making high-precision mass measurements of very short lived nuclei
- TITAN has performed precision mass measurements of He, Li and Be halo nuclei (final analysis pending).
- New halo mass measurements allow a refined charge radius determination and shed new light on the structure of halo nuclei
- More mass measurements to come this year (halo, CKM, structure, HCI, etc.)
- Neutrinoless ββ-decay measurements using EBIT (T. Brunner on Friday)

The **TITANs**

M. Brodeur, T. Brunner, C.Champagne, J. Dilling, P. Delheij,S. Ettenauer, M. Good, A. Lapierre,D. Lunney, R. Ringle,V. Ryjkov, M. Smith,and the TITAN collaboration

