#### Penning trap mass measurements of light, neutron-rich halo nuclei and recent developments at TITAN Ryan Ringle RNB 8





# Properties of neutron halo nuclei







# Penning trap mass spectrometry of short-lived radioactive nuclides

Bollen et. al., J. Appl. Phys. 68 (1990) 4355

Brown and Gabrielse, Rev. Mod. Phys. 58 (1986) 233



Linear Magnetic Field + Harmonic Electrostatic Potential



Three Harmonic Eigen-motions



The mass measurement is made by finding the true cyclotron frequency of the ion in the trap



Application of quadrupolar field converts magnetron motion into cyclotron motion



Extraction through magnetic field converts radial energy to longitudinal energy

Gräff et. al., Z. Phys. A **297** (1980) 35 Bollen et. al., J. Mod. Opt. **39** (1992) 257 König et. al., IJMS **142** (1995) 95



Measurement of TOF gives cyclotron frequency and hence the mass





# The TITAN facility at ISAC

Dilling et. al., IJMS **251** (2006) 198



В



### TITAN - built for speed



#### Fast DAQ/Controls

- MIDAS based data acquisition
- minimal software/hardware interaction during measurement
- free-running frequency modulated RF system
- DAQ/controls not limiting measurement repetition rate

#### Parallel Operation

- parallel loading of RFQ
- parallel sideband cooling in EBIT (no charge breeding)
- purified samples delivered to MPET on demand

#### Fast Magnetron Preparation<sup>1</sup>



#### MR-TOF Isobar Separator (coming soon)



resolving power comparable to sideband cooling in a significantly shorter time



### What role do masses play?





### Halo masses and charge radii

Mass references

<sup>11</sup>Li: Smith et. al., PRL **101** (2008) 202501

<sup>11</sup>Be: Ringle et. al., PLB **675** (2009) 170

<sup>12</sup>Be: Ettenauer et. al., in prep.





#### **Preliminary**

New mass shift term calculations by G. Drake using new TITAN masses atomic mass no longer a contributing source of uncertainty



#### ab-initio theory references

DCM <sup>11</sup>Li: Tomaselli et al., Nucl. Phys. A **690** (2001) 298

GFMC (AV18+UIX, AV8) <sup>6</sup>He: Pieper, et. al., PRC 64 (2001) 014001

SVMC<sup>11</sup>Li: Varga et al., PRC **66** (2002) 3013

NCSM (AV8) <sup>6</sup>He, <sup>11</sup>Be: Forssén et. al., PRC **71** (2005) 044312

GFMC (AV18+IL2) <sup>6,8</sup>He: Pieper, Nucl. Phys. A **751** (2005) 516c

NCSM (CDB2k, INOY) <sup>6,8</sup>He: Caurier and Navrátil, PRC **73** (2006) 021302(R)

NCSM (CDB2k, INOY) <sup>11</sup>Li, <sup>11</sup>Be: Forssén et al., PRC **79** (2009) 021303(R)







### HCI's with the TITAN EBIT

14



#### Preliminary





must account for electron binding energies (~ 433 eV) <sup>16</sup>O<sup>6+</sup> vs. <sup>6</sup>Li<sup>+</sup> (<sup>6</sup>Li<sup>+</sup> from surface ion source)



Time of flight (µs)



# Summary and Outlook

### <u>Halo nuclei</u>

- High precision penning trap mass measurements of  $^{6,8}$ He,  $^{11}$ Li and  $^{11}$ Be have been performed with  $\delta m < 1 \text{ keV}$
- Mass values obtained with TITAN do not contribute a significant source of uncertainty to relative charge radius determinations
- Future halo mass measurement proposals include <sup>19</sup>C (1n), <sup>14</sup>Be (2n) and <sup>17</sup>Ne (2p).



### Charge Breeding

- Stable HCI's have been measured in the MPET
- Radioactive HCI's have been produced
- Purification and identification techniques are being developed
- High-precision mass measurements of radioactive species later this year



#### Collaborators





M. Brodeur, T. Brunner, S. Ettenauer, A. Gallant, M. Smith, A. Lapierre, R. Ringle, V. Ryjkov, M. Good, P. Delheij, D. Lunney, and J. Dilling for the TITAN collaboration

