

Electron Capture branching ratio measurements at TITAN-TRIUMF

T. Brunner, D. Frekers, A. Lapierre, R. Krücken, I. Tanihata, and J. Dilling for the TITAN collaboration

Canada's National Laboratory for Nuclear and Particle Physics, Vancouver, British Columbia, Canada

- Neutrino experiments and the neutrino mass
- Double beta decay experiments and their theoretical description
- Electron Capture Branching Ratio measurements (EC-BR) with the EBIT

Neutrino experiments and the neutrino mass

Neutrino oscillation

Tritium decay

SNO, picture taken from http://www.oit.on.ca

Relative mass scale

- Indicate a neutrino mass [1]
- Determination of mixing angle θ_{ii}
- Indicate mass hierarchy
- \bullet Determination of δm^2

[1] T. Kajita and Y. Totsuka, Rev. Mod. Phys. 73(2001)85

Hirschegg 18. Jan 2008

KATRIN, picture taken from http://students.washington.edu

Absolute mass scale

- Endpoint energy of ³H decay
- Effective mass for degenerated neutrinos:

$$m_{\nu}^2 = \sum_{j} \left| U_{e_j} \right|^2 m_j^2$$

Double β decay

Worldwide topic

 2ν double β - decay

Standard model

$$n+n \rightarrow 2 p+2 \beta^-+2 \overline{\nu}_e$$

Half life> 10¹⁷ years (⁷⁶Ge)

Dirac - Neutrino

Hirschegg 18. Jan 2008

 $\textit{Ov double } \beta \textit{-decay}$

Lepton number violation

Half life> 1.9x10²⁵ years [2] (⁷⁶Ge)!!!

Majorana - Neutrino

[2] C.E. Aalseth et al., Phys. Rev. D65(2002)092007[3] S.R. Elliott and P. Vogel, Annu. Rev. Nucl. Part. Sci. 52(2002)115

Double β decay

Worldwide topic

 2ν double β - decay

Standard model

$$n+n \rightarrow 2 p+2 \beta^-+2 \overline{\nu}_e$$

Half life> 10¹⁷ years (⁷⁶Ge)

Dirac - Neutrino

Hirschegg 18. Jan 2008

 0ν double β - decay

[2] C.E. Aalseth et al., Phys. Rev. D65(2002)092007[3] S.R. Elliott and P. Vogel, Annu. Rev. Nucl. Part. Sci. 52(2002)115

accessible thru chargeexchange reactions in (n,p) and (p,n) direction (e.g. (d,²He) or (³He,t)) as well thru EC-BR

 $2\nu\beta\beta$ decay

Primakoff-Rosen approximation [4]

 $M_{\text{DGT}}^{(2\nu)} = \sum_{m} \frac{\left\langle \mathbf{0}_{g.s.}^{(f)} \middle| \sum_{k} \sigma_{k} \tau_{k}^{-} \middle| \mathbf{1}_{m}^{+} \right\rangle \left\langle \mathbf{1}_{m}^{+} \middle| \sum_{k} \sigma_{k} \tau_{k}^{-} \middle| \mathbf{0}_{g.s.}^{(i)} \right\rangle}{\frac{1}{2} \mathbf{Q}_{\beta\beta}(\mathbf{0}_{g.s.}^{(f)}) + \mathbf{E}(\mathbf{1}_{m}^{+}) - \mathbf{E}_{\mathbf{0}}}$ $=\sum \frac{M_{m}\left(GT^{+}\right)M_{m}\left(GT^{-}\right)}{T}$

[4] H. Primakoff and S.P. Rosen, Rep. Prog. Phys. 22(1959)121

Hirschegg 18. Jan 2008

76_{Se}

(4) transition

. 9

(3)

r(1)

 (1^{+})

 (1^{+})

virtual

J. Dilling et al., Can. J. Phys. 85(2007)57

Theoretical description

 \bullet Description of double β decay nuclei with the $\ensuremath{\text{proton-neutron}}$ Quasiparticle

Random Phase Approximation (pn-QRPA)

- Adjustable particle-particle parameter g_{pp} in pn-QRPA for all **single** and **double** β decay calculations (The many-particle Hamiltonian is a function of g_{pp})
- Extrapolation of calculated matrix elements to $2\nu\beta\beta$ half life provides g_{pp} ($g_{pp} \sim 1$)
- $2\nu\beta\beta$ decay is **sensitive** to g_{pp} , $0\nu\beta\beta$ decay is **insensitive** to g_{pp}
- Cross check of g_{pp} with single β^{-} and EC decays

Example ¹¹⁶Cd

Recent critical assessment of the theoretical situation

- 1. g_{pp} also enters into calculation of single β decay
- this allows to make (in few cases) precise predictions about EC-rates
- 3. in confronting with experiment, theory fails **BADLY**

(if EC is known)

In case of single state dominance:

Determination of M_{EC}

$$M_{\text{tot}}^{(2\nu)} \simeq \frac{M_{EC} M_{\beta-}}{\frac{1}{2} Q_{\beta\beta}(\mathbf{0}_{g.s.}^{(f)}) + E_{g.s.}(\mathbf{1}^+) - E_0}$$

The use of $g_{pp}(\beta\beta) \approx 1.0$ reproduces the $2\nu\beta\beta$ decay half-life but not the single EC and β^{-} decay.

Discrepancies of 1 – 2 orders of magnitude are possible

[8] A. García et al., Phys. Rev. C47(1993)2910

Hirschegg 18. Jan 2008

TITAN Facility

TRIUMF Ion Trap for Atomic and Nuclear science

The EBIT - Schematic

The EBIT - Schematic

Hirschegg 18. Jan 2008

Branching Ratio Measurements

10	1+ $Q_{EC} = 0.168$ ε ~ 0.0018% ¹⁰⁰ Mo $\frac{\beta^{-}\beta^{-}}{\beta^{-}}$			15.8 s $Q_{\beta} = 3.202$ \rightarrow ¹⁰⁰ Ru	
	⁷⁶ Ge :	⁷⁶ As (EC)	[2-→0+, T1/2 = 26.2 h]	K_{α} = 9.9 keV	
	¹²⁸ Te :	¹²⁸ I (EC)	[1+→0+, T1/2 = 25.0 min]	K_{α} = 27.5 keV	
	⁸² Se:	^{82m} Br (EC)	[2-→0+, T1/2 = 6.1 min]	K_{α} = 11.2 keV	
	¹¹⁶ Cd :	¹¹⁶ In (EC)	[1+→ 0+, T1/2 = 14.1 s]	K_{α} = 25.3 keV	
	¹¹⁴ Cd :	¹¹⁴ In (EC)	[1+→ 0+, T1/2 = 71.9 s]	K_{α} = 25.3 keV	
	¹¹⁰ Pd :	¹¹⁰ Ag (EC)	[1+→0+, T1/2 = 24.6 s]	K_{α} = 21.2 keV	
	¹⁰⁰ Mo:	¹⁰⁰ Tc (EC)	[1+→ 0+, T1/2 = 15.8 s]	K_{α} = 17.5 keV	
		0, ((1010)	MEASUREMENTS		

CANDIDATES FOR BRANCHING RATIO

10⁵ ions in trap with one half-life measurement cycle:

• solid angle: 2.1%

5.7 x 10⁻³ EC counts/cycle

• detection efficiency: 30%

100 EC counts \rightarrow 17636 EBIT fills \rightarrow 74h

88h proposed for ¹⁰⁰Tc

Loss through wall collisions → Rotating wall cooling or side-band cooling

Passivated Implanted Planar Silicon detector

Hirschegg 18. Jan 2008

Summary

- There are discrepancies in the description of $2\nu\beta\beta$ within the pn-QRPA
- M_{EC} and M_{β} for single decays do not agree with those extrapolated from $2\nu\beta\beta$ decay
- TITAN EBIT offers a novel approach for EC-BR measurements
 - Long storage times
 - Low background at X-ray detector

...for the future

- TITAN EBIT will be connected to the TITAN beam line (EBIT was commissioned in August 2006).
- First EC branching ratio measurements with the EBIT by the end of this year

People/Collaborations

M. Brodeur, T. Brunner, C. Champagne, J. Dilling, P. Delheij, S. Ettenauer, M. Good, A. Lapierre, D. Lunney, C. Marshall, R. Ringle, V. Ryjkov, M. Smith, and the TITAN collaboration.

