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Abstract

Neutron halo nuclei are distinguished by an extended matter radius and a
small neutron separation energy compared to other nuclei. They are com-
prised of a core surrounded by at least one loosely bound neutron forming
a halo structure. The size of the core is associated with the charge radius
while the extent of the diffuse halo region, owing to quantum mechanical
leakage of the valence neutron(s) wavefunction, depends exponentially on
their separation energy. Predicting accurately the extreme behaviour of
these nuclei is challenging for nuclear theory. These nuclei provide an ideal
testing grounds of nuclear theory, leading to a deeper understanding of the
strong force and nuclear interactions. Halo nuclei can be found amongst light
nuclei and hence have few (A ∼ 10) nucleons. This makes them treatable
using ab-initio methods. To test these theoretical approaches and conse-
quently refine our knowledge of the nucleus, one requires both precise and
accurate experimental data, such as ground state properties: masses (or
separation energies) and sizes (charge and matter radii). In this thesis we
present the mass measurement of the two- and four-neutrons halo 6,8He (t1/2
= 808 ms, 119 ms respectively) using the TITAN Penning trap as well as
systematic studies of this system. The obtained mass are m(6He) = 6 018
885.883(57) u and m(8He) = 8 033 934.435(114) u. These values show devia-
tions with literature of 4.0 and 1.7σ. Using our new masses, we re-evaluated
the charge radius and obtained 〈r2〉1/2c (6He) = 2.056(10) fm and 〈r2〉1/2c (8He)
= 1.955(18) fm, which correspond to an improvement in the precision of 9%
and 36% respectively. Using the charge radii and the binding energies of
6,8He, obtained from our more precise and accurate masses, we show that
one can test the predictions of advanced ab-initio nuclear theories for these
extreme systems. Using such comparison, we point to the needs of three-
body interactions in order to explain the experimental observables.
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Chapter 1

Introduction

Nuclear physics is the field of physics that studies the structure, interactions
and properties of atomic nuclei as well as the laws governing the forces
between their constituents. Each nucleus is made of at least one of the two
constituents: the proton and the neutron. The nucleus can be characterized
according to several parameters including its radius, density and binding
energy. Nuclei are described by two types of radii: the matter radius and
charge radius. The first is a measure of the extent of both the neutron and
the proton distributions in the nucleus, while the second is a measure the
extent of the proton distribution only. It is generally observed that both
radii are equal within 0.1 fm [Kra88]. Other common feature of nuclei is the
near-constant radial density, ρ(r), of the nucleons within the nucleus:

ρ(r) ≈ A
4π
3 R

3
= constant (1.1)

where R = 〈r2
m〉1/2 is the rms (root-mean-square) matter radius (in the

following all radii are understood as rms-radii) and A is the total number
of proton and neutrons in the nucleus, also known as the mass number.
This near-constant number of nucleons per volume results in a cube root
dependance of the matter radius with the mass number:

〈r2
m〉1/2 ∝ A1/3. (1.2)

Lastly, nuclei are characterized by their binding energy. This quantity is
the energy necessary to disassemble the nucleus into individual protons and
neutrons. The binding energy defines the boundaries of the nuclear land-
scape, named driplines. These driplines are where an additional neutron or
proton can no longer be confined within the nucleus due to lack of binding
energy. Driplines exists on both side of the chart of nuclei (see figure 1.1).
When approaching, for example, the neutron dripline, each additional neu-
tron decreases the energy necessary to separate one neutron from the nu-
cleus. Eventually, this separation energy becomes less than zero, and at this
point the additional neutron is not bound to the nucleus. For small posi-
tive separation energy (less than 1 MeV) compared to the average 8 MeV,

1



1.1. Nuclear halos
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Figure 1.1: Chart of nuclei showing all known nuclei. The nuclei are coloured
according to their half-life. The green line indicates the predicted position
of the neutron dripline and the blue line the proton dripline according to one
of several existing mass model (labeled “mysw94” [Mye96]). Figure created
by Nucleus-AMDC.

an interesting phenomenon occurs. The combination of the low neutron
separation and the short range of the nuclear force results in their quantum
mechanical leakage forming an extended halo structure. These type of nuclei
are called nuclear halos and they are very specific and atypical.

1.1 Nuclear halos

The first experimental evidence for the existence of halo nuclei came from
interaction cross section measurements of helium and lithium isotopes car-
ried out by Tanihata et al. [Tan85a, Tan85b, Tan88]. Using Glauber-model
analysis [Gla58], they extracted the matter radii values (presented in fig-
ure 1.2) and discovered an abrupt increase in matter radius for 11Li that
went beyond the normal A1/3 dependence. Comparatively, the matter ra-
dius of 11Li is larger by 5 standard deviations when compared to 12C, making
it a significant increase. Furthermore, equation (1.2) predicts that the rms
matter radius of a nucleus should be independent of the neutron-to-proton

2



1.1. Nuclear halos
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c 〉1/2 of helium [Mue07] and lithium [San06]. The matter radius of 12C

[Oza01] is shown for comparison. Note that the large difference between
charge and matter radius for 6He, 8He and 11Li, illustrates the characteristic
of a halo structure.

ratio for given a mass number (hence isobar-independent). However, for two
cases with equal number of nucleons: 6He - 6Li and 8He - 8Li different radii
are found.

For most nuclei the charge and matter radius are equal within 0.1 fm,
however for the three peculiar cases: 6He, 8He and 11Li, larger differences
are found as shown by figure 1.2. In the case of 11Li, for instance, while
the matter radius increases by 0.8(2) fm, the charge radius only increase
by 0.25(5) fm compared to 9Li. The increase in charge radius indicates
that the added two neutrons have some effect on the proton distribution.
However, the comparatively larger increase in matter radius indicates that
the neutron distribution is more affected by the added neutrons. This leads
to a representation of 11Li as formed of a 9Li core surrounded by two loosely
bound neutrons.

In their landmark study, P.G. Hansen and B. Jonson [Han87] proposed
a simple model to explain the non-typical increase (or enlargement) in the

3



1.1. Nuclear halos

matter radii for certain isotopes. In their model 11Li is described as system
composed of a 9Li core and a di-neutron. The finite-range nuclear potential
of the system is approximated to be a three-dimensional square well of radius
R and can be approximated as being the size of the 9Li core. Outside the
potential well, the wavefunction is given by spherical Hankel functions and
for relative angular momentum l = 0 between the core and the di-neutron,
the wave function has the form

ψ(~r) = (2πρ)−1/2 e
−r/ρ

r

eR/ρ

(1 +R/ρ)1/2
(1.3)

where r is the distance between the core centre and di-neutron mid-seperation
and

ρ = ~/(2µS2N )1/2, (1.4)

is the decay length of the wave function. The decay length depends on the
two-neutron separation energy S2N and the reduced mass µ, defined as

µ =
m(9Li) · 2mn

m(9Li) + 2mn
(1.5)

wherem(9Li) is the atomic mass of 9Li andmn is the neutron mass. The two-
neutrons separation energy is the energy necessary to remove two neutrons
from a nucleus, and is given by:

S2N (Z,N) = m(Z,N − 2) + 2mn −m(Z,N) (1.6)

where m(Z,N) is the atomic mass for a nucleus with Z protons and N
neutrons and mn is the neutron mass. For this expression, we assume the
speed of light c = 1. From equation (1.3), the two-neutron separation energy
determines how much the two-neutron wave function extends out of the
nuclear potential and, consequently, the size of the matter radius. Therefore,
within the Hansen and Jonson model, the two-neutron separation energy is
a key parameter in defining two-neutron halo nuclei.

More generally, the nuclear halo is defined as a nucleus composed of
a core surrounded by a diffuse region created by the quantum mechanical
leakage of the valence nucleons [Jon04]. There are two kinds of halo nuclei,
named according to the type of nucleon that form the halo structure: the
neutron and the proton halo. Proton halos are considerably less abundant
than neutron-halos. This is due to the stronger Coulomb barrier seen by the
weakly bound proton. This barrier attenuates the leakage of the proton wave
function outside the potential well. In this thesis we mainly concentrate on
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1.1. Nuclear halos

the more predominant neutron halo. From this point, we refer to neutron
halo nuclei as simply halo nuclei.

There are two quantities needed to identify halo nuclei: the size of the
core and the size of the diffuse halo structure outside the core. Being quan-
tum mechanical objects, it is not possible to define a “total” radius for the
core and the halo structure. However, it is possible to distinguish the size of
the valance neutrons distribution from the core. The size of the core is given
by the extent of the proton distribution, namely the charge radius and the
extent of the valence neutron wave function which is given by the matter
radius. Thus, in order to qualify as halo nuclei there needs to be a significant
difference between their charge and matter radii. Figure 1.2 shows that two
nuclei qualify as halo nuclei along the helium isotopic chains: 6He and 8He.
This thesis reports a new determination of the binding energy and subse-
quent reevaluation of the charge radius of 6He and 8He based on the mass
measurement of these nuclei. In the following we outline the motivations for
measuring their masses.

1.1.1 Motivations for the mass measurement of 6He and
8He

We showed in the previous section that a halo structure can be identified
from a large difference between charge and matter radii. The charge radius
of halo nuclei also gives valuable insight into the correlations between the
neutrons forming the halo, as we show in section 1.1.2.3.

The charge radius of 6He and 8He have been recently determined us-
ing isotopic shift measurements: 6He at the Argonne National Laboratory
[Wan04] and 8He at the GANIL facility [Mue07]. In this method a transition
frequency is measured for two isotopes of the same element. The increase
in number of neutrons in the nucleus causes a change in the transition fre-
quency called isotopic shift. This shift has two components: the mass shift
and the field shift. The former include the effects on the energy level arising
from the change in reduced mass of the electron and is inversely proportional
to the nuclear mass. The field shift is caused by the change in volume and
hence effective electric fields of the nucleus and is proportional to the change
in charge radius. For light nuclei, the mass shift is considerably larger than
the field shift. For instance, the mass shift of 8He is 72 000 times larger than
its field shift. This large difference is explained by both the larger fractional
change in the mass for light nuclei and the smaller volume of light nuclei.
The strength of the two components of the isotopic shift as a function of the
atomic number Z are shown in figure 1.3.
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Figure 1.3: Dependance of the field shift and mass shift on mass number.

Error 6He (%) 8He(%)
Statistical 6 18

Atomic mass 19 58
Other systematics 75 24

Table 1.1: Relative contributions, in percent, of various sources of errors
on the charge radius of 6,8He coming from the isotopic shift measurement
[Mue07]. Note that the error from the atomic mass of 8He accounts for over
half of the total error, while it is almost 20% for 6He.

The comparatively large size of the mass shift term compared to the field
shift term requires that in order for both terms to be known to a similar
absolute precision, the mass shift term must be known to a considerably
larger relative precision. Since the mass shift term is inversely proportional
to the atomic mass and the field shift term is proportional to the charge
radius, in order to have a reliable charge radius a precise mass determination
is important. In the case of 8He, the atomic mass value is, in fact, the
dominant source of systematic uncertainty on the charge radius. Table 1.1
shows that the atomic mass constitutes 58% of the uncertainty on the results
of the isotopic shift measurement of 8He and 19% for the case of 6He [Mue07].

In order to minimize the contribution of the atomic mass to the charge
radius uncertainty, we estimate that the mass excesses of 6He and 8He need
to be known at levels of 350 eV and 730 eV, respectively. Mass excess is
generally referred to as the difference between the atomic mass and the mass
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1.1. Nuclear halos

Isotope Ref. M.E. (keV)
6He [Aud03] 17 595.11 ± 0.76
8He [Aud03] 31 598.0 ± 6.9
8He [Tri77] 31 593 ± 8
8He [Kou75] 31 613 ± 17

Table 1.2: 6He and 8He mass excesses from the AME03 and the major
contributions to the AME03 8He mass evaluation.

number, which is expressed in units of keV. However, table 1.2 shows that
the mass excesses of 6He and 8He from the 2003 Atomic Mass Evaluation
(AME2003) [Aud03] are 760 eV and 6.9 keV respectively. This means that,
in the case of 8He, an improvement in the precision of almost a factor of ten is
needed to offset the impact of the mass uncertainty whereas an improvement
of a factor of two is necessary for 6He.

In addition to improving the precision level, there is a need to verify the
accuracy of the mass values for 6He and 8He. The precision is a measure
of the reproducibility of the measurement, while the accuracy measure its
correctness. The best way to confirm the accuracy of a measurement is to
have an independent verification of this measurement at a similar or better
level of precision. Table 1.2 shows the two major contributions ([Kou75] and
[Tri77]) to the mass evaluation of 8He. These two results differ by 20 ± 19
keV, which means that the value of the charge radius of 8He is uncertain by
as much as 40%. Therefore, precise and accurate mass values for the halo
nuclei 6He and 8He are important to increase the reliability of the charge
radius value.

With a precise and accurate knowledge of the charge radius and binding
energies of the 6He and 8He halos, one can test the validity of the current
nuclear theories all of which attempt to explain the complex interactions
within the nucleus. For example, ab-initio (from first principle) methods are
one of the more sophisticated approaches to investigating the nuclear sys-
tem. These methods use nucleons as the building block and the Schrödinger
equation to compute the nuclear properties (see section 1.3 for more de-
tails). However, the complexity of the calculation increases rapidly with the
number of nuclei and it is currently limited to systems with mass number
A . 10. Within this mass range, there are two systems that offer unique
opportunity to test these ab-initio methods, the neutron halo nuclei 6He and
8He. Explaining the extreme properties of halo nuclei such as their very low
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1.1. Nuclear halos

valence neutron separation energy, large matter radius and large difference
between charge and matter radius poses a challenge to the ab-initio meth-
ods. For example, for some methods [Pie07], the calculation of the charge
radius is particularly sensitive to the neutron separation energy. The small
neutron separation energy of halo nuclei is close enough to zero to cause
the nuclei to “break apart” if the initial parameters of the calculations are
not set properly. Therefore, explaining both the binding energy and charge
radius of 6He and 8He is challenging for ab-initio methods.

In order to compare the predictions of ab-initio methods with the mea-
sured binding energies and charge radius, one needs to have precise and
accurate values for both quantities. However, the current uncertainty on
the charge radius of 6He and 8He is in the same range as the theoretical val-
ues. The atomic mass being an important contributor to the uncertainty of
the charge radius, a precise and accurate mass measurement of these nuclei
is critical for having a reliable test of the ab-initio method predictions. In
order to remove the atomic mass as being an important contributor to the
uncertainty of 6He and 8He charge radius, their masses needs to be known
to the 10−7 level.

Currently, the only type of spectrometer that can achieve such level
of precision and accuracy are Penning traps. Therefore, we conducted a
mass measurement of 6He and 8He using the TRIUMF Ion Trap for Atomic
and Nuclear science (TITAN) Penning trap. Extensive systematic studies
of the TITAN Penning trap have been performed (see chapter 2) with the
purpose of reaching the precision and accuracy needed for the 6He and 8He
mass measurement. As a result of these studies, we also performed a mass
measurement on 6Li, in order to resolve an existing 1.6 × 10−8 disagreement
between two previous Penning mass measurements [Hea01, Nag06]. This
also represents a milestone regarding the level of precision the experiment
can presently achieve.

1.1.2 The different types of halo nuclei and characteristics
of 6He and 8He

Halo nuclei are classified as proton and neutron halos. Proton-halo are
considerably less abundant than the neutron-halos because of the stronger
Coulomb barrier experienced by the weakly bound protons. To date, only
8B [Min92] has been identified as a one proton-halo.

Comparatively, the weakly bound neutrons are not affected by the coulomb
barrier and thus more neutron-halos have been identified, such as 6He, 8He,
11Li, 11Be and 14Be (figure 1.4). Generally, there are three types of neutron
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Figure 1.4: Section of the chart of nuclides, showing the lightest halo nuclei:
the one proton halo 8B, the one neutron 11Be, the two-neutrons 6He, 11Li
and 14Be and the four neutron halo 8He labeled by colour code. Also shown
are the neutron and proton driplines.

halos: one neutron halo such as 11Be, two neutron halos such as 6He, 11Li
and 14Be and four neutron halo such as 8He (see figure 1.4). Not all halo
nuclei are listed in the chart in figure 1.4, for instance, the one-neutron halo
19C [Baz95] and the two-neutron halo 22C [Tan10]. In addition, the halo
nature of some nuclei such as 15C, 17C and 14B [Baz98], not shown in the
graph, are still under debate. Furthermore, more halo nuclei are expected
to be found as the production of heavier dripline nuclei in larger quantities
will become possible.

1.1.2.1 Neutron separation energies

The identified neutron halos share the common feature of being located along
the neutron dripline (see figure 1.4). The proton and neutron driplines set
the boundary between bound and unbound systems. A nucleus is bound
when energy is required to remove one or two nucleons. This means that
the one-neutron separation energy, defined as

SN (Z,N) = m(Z,N − 1) +mn −m(Z,N) (1.7)

as well as the two-neutrons separation energy (see equation (1.6)) of the
nuclei needs to be positive for the nucleus to be bound. The type of halo to
be formed is strongly influenced by the values of the one- and two-neutron
separation energies.

To illustrate this principle, we looked at the one- and two-neutron sep-
aration energies for helium, lithium and beryllium isotopes (figure 1.5) and
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Figure 1.5: One- and two-neutron separation energies SN (top) and S2N

(bottom), as a function of neutron number for helium, lithium and beryllium
isotopes. One-neutron halo is squared, two-neutron halos circled and four-
neutron halo triangled. The error bars are not visible at this scale.

the effects of nucleon paring. Nucleon pairing is the phenomenon where
nucleons of the same type tend to pair up to form a more stable structure.
This results in the even-neutron, even-proton number nucleus to form a more
energetically favorable configuration than when one or both number of nu-
cleon are odd. As a result, for a given number of protons, the nucleus with
an even number of neutrons are more tightly bound and present a larger
one-neutron separation energy than its odd neutron number counterpart.

Figure 1.5 shows the staggering pattern in the one-neutron separation
energy among the three series of isotopes which is caused by nucleon par-
ing. We now show how this staggering explains the different types of halo
structures. Taking 4He as an example, the addition one neutron to 4He
reduces the one-neutron separation energy to below zero, which means that
the added neutron is readily expelled and thus 5He is non-existing. However,
when adding an additional neutron to 5He, the one-neutron separation en-
ergy rises slightly above zero. This means the valence neutron pair forms a
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weak and stable bond with the 4He core. The weakness of that neutron pair
is evidenced by the small (below 1 MeV) two-neutron separation energy of
6He, as shown in the bottom half of figure 1.5. Therefore, a two-neutron 6He
halo is formed. Similarly, when adding one extra neutron to 6He, the one-
neutron separation energy again falls below zero, and yet it returns to above
zero after adding an additional neutron. Hence, this new valence neutron
pair forms a weak and stable bond with the 6He structure. A four-neutron
8He halo is then formed (See later section 1.2.1 for more elaborate account).
Regarding the formation of one-neutron halos, the same principle applies.
For example, 10Be has six neutrons. Adding one neutron reduces the one-
neutron separation energy but not below zero. Therefore, the new neutron
forms a weak, stable bond with the 10Be core. The one-neutron halo 11Be is
thus formed. It is noteworthy to note that all neutron halos occur in nuclei
close to the neutron dripline where the valence binding energy approaches
zero.

a) b)

Figure 1.6: a) The Borromeo family coats of arms figuring the famous bor-
romean rings (circled). b) Borromean rings carved on the door of the Church
of San Sigismondo in Cremona.

Borromean halos are a special type of two-neutron halo nuclei. Examples
are the two-neutron halos 6He, 11Li and 14Be. Borromean halos are named
after the aristocratic Borromeo family who used a special ring configuration
on their coat of arms (see figure 1.6). These three rings are interlocked
in such a way that if one ring is removed, it disentangles the other two.
Figure 1.7 illustrates the case for 6He. Both the 4He + n system (5He) and
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Figure 1.7: Comparative illustration of the borromean nucleus 6He and the
borromean rings. The Borromean rings shown around the different com-
pounds, indicate that when one of the constituent of the borromean nuclei
is missing, the system is unlocked.

the two-neutron system (2n) are unbound, while the 4He + n + n system
(6He) is bound.

1.1.2.2 Cross section comparison

Evidence for the two-neutron halo structure in 6He is based on the compari-
son of the interaction cross section, σI , of 4He and 6He with the two-neutron
removal cross section, σ−2n, of 6He. The interaction cross section is the total
cross section for process of proton and neutron removal. This cross section
was measured using transmission-type experiment where a 790 MeV/nucleon
beam of 6,8He impinge a 12C target. The nuclei that are transmitted through
the target then goes into a dipole magnet where they are identified according
to their bending angle. In order to determine the interaction cross-section,
the number of incoming nuclei is measured before the target and the num-
ber of transmitted nuclei from the same isotope is also counted after the
dipole magnet. The total interaction cross section between the beam and
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the target material is then calculated using:

σI =
1
Nt

ln
(
γ0

γ

)
(1.8)

where γ is the number of non-interacting 6,8He transmitted over the number
of incoming 6,8He, γ0 is the same ratio but without the target in place and
Nt is the number of target nuclei per cm2. The two-neutron removal cross
section of the isotope AHe is simply the production cross section of the
isotope A−2He from the interaction of AHe with the target material.

Based on the small two-neutron separation energy of 6He, we can assume
that 6He is composed of a 4He core surrounded by two neutrons. If one
assumes that the 4He core is not modified from the free 4He, Ogawa, Yabana
and Suzuki [Oga92] showed using a Glauber model analysis that the cross
section for the removal of two neutrons from 6He is equal to the difference
in interaction cross section of 4He and 6He:

σ−2n(6He) = σI(6He)− σI(4He). (1.9)

Using the measured values for these cross sections using 790 MeV/nucleon
beam on a 12C target [Tan92], we get

σ−2n(6He) = 189± 14 mb (1.10)
σI(6He)− σI(4He) = 219± 8 mb, (1.11)

which agrees within two standard deviations. This verifies that 6He is com-
posed of a 4He core and two loosely bound neutrons.

To test whether 8He is comprised of a 6He core surrounded by two neu-
trons or of a 4He core plus four neutrons, we apply the same cross section
comparison. Firstly, we examine the 6He plus two neutron possibility by
comparing the measured two neutron removal cross section of 8He with the
interaction cross section of 6He (again for 790 MeV/nucleon beam on a 12C
target [Tan92]):

σ−2n(8He) = 202± 17 mb (1.12)
σI(8He)− σI(6He) = 95± 9 mb. (1.13)

This yields an inconsistent value and therefore 8He cannot be interpreted as
a 6He core plus two neutrons.

Secondly, we examine the possibility of a 4He plus four neutron system.
We assume that 8He is formed of an unperturbed 4He core surrounded by

13



1.1. Nuclear halos

four neutrons. Modifying equation (1.9) to account for the removal of four
neutrons [Tan92], we get:

σ−2n(8He) + σ−4n(8He) = σI(8He)− σI(4He). (1.14)

Using this expression, we find:

σ−2n(8He) + σ−4n(8He) = 297± 19 mb (1.15)
σI(8He)− σI(4He) = 314± 8 mb. (1.16)

The result is in agreement and it suggests that 8He can be described as a
4He core surrounded by four neutrons.

1.1.2.3 Charge radius of halo nuclei

Halo nuclei are defined as a core surrounded by valence nucleons that tun-
nel outside the core. In Figure 1.2 we observe that in a neutron-halo, the
difference between the extension of the proton wave function and the neu-
tron wave function is observed as a difference in charge and matter radii.
A determination of both quantities is important to characterize a neutron
halo.

rms matter 

radius

rms charge 

radius

θNN b)

larger core motion    

larger rms charge radius

θNNa)

Figure 1.8: Classical representation of a 6He nucleus comprising a 4He core
and two neutrons. The movement around the centre of mass depends on
the relative position of the valence neutrons in the halo structure. a) larger
movement induced by neutrons being predominantly on one side of the core
b) smaller movement caused by neutrons predominately on the opposite side
of the core. See text for more explanations.
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In addition, the charge radius provides valuable information on the size of
the halo structure as well as the relative positions and motion of the valence
neutron. In figure 1.8, we illustrate that for a given matter radius the 6He
halo has a larger charge radius if the two valence neutrons predominately
reside on one side of the 4He core. However, if the two valence neutrons
reside mainly on the opposite ends of the core, the charge radius of 6He
becomes much smaller.

With the knowledge of charge radius, one can determine the average
classical angle θNN between the two valence neutrons (figure 1.8(a)) using
the charge radius. C.A. Bertulani and M.S. Hussein [Ber07] have determined
the opening angle of the two valence neutrons of 6He using the charge radius
from [Wan04]. They calculated an angle of θNN = 78◦+13

−18 . This means that
the two neutrons are, in a classical picture, located on the same side of the
core. Similarly as for 6He, a change in the charge radius of 8He compared to
4He would be a consequence of the correlation between the neutrons forming
the halo. Then within this classical approach, comparing the charge radius
of 8He with 6He would reveal whether the distribution of the four neutron
is more symmetric around the core or if the neutrons are more paired.

1.1.2.4 6He and 8He charge radius measurements

The 6He and 8He charge radii were determined [Wan04, Mue07] using iso-
topic shift measurements. This is a method that measures the variations in
atomic energy levels due to changes within the nucleus. These are changes
in the fine and hyperfine splitting of the atomic energy levels.

In this method, the frequency of a given atomic transition is measured for
two different isotopes. Then, the isotopic shift δνA,A

′
, which is the difference

between the frequencies (νA
′
, νA) of transitions of isotope A and A′ of the

same element [Ott87]:

δνA,A
′

= νA − νA′ = δνA,A
′

MS + δνA,A
′

FS (1.17)

is calculated. The right-hand side of equation (1.17) shows that the isotopic
shift is composed of two components; a mass shift δνA,A

′

MS and a field shift
δνA,A

′

FS .
The mass shift is given as [Ott87]:

δνA,A
′

MS = (KNMS +KSMS)
MA −MA′

MAMA′
, (1.18)

where KNMS is the normal mass shift coefficient and KSMS is the specific
mass shift coefficient. KNMS takes into account the recoil of the nucleus
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due to the motion of the electrons and KSMS represent the influence of
the electron motion correlation on the motion of the nucleus. The mass
shift is produced by a change in the reduced mass of the electron µe =
meMA/(me + MA) for the different isotopes. This different reduced mass
then results in a different binding energy for the electron. The mass shift
is dominant for light nuclei as the relative change in nuclear mass with the
number of neutrons is larger than for heavier nuclei.

The field shift is produced by a change in the charge density distribution
in the nucleus due to the different number of neutrons. The field shift is
given as

δνA,A
′

FS = KFS · δ〈r2
c 〉A,A

′
, (1.19)

where KFS is the electronic field shift constant. This constant depends on
the nuclear charge and reflects the change in the electron charge density
between the two transition states. δ〈r2

c 〉A,A
′

is the difference in mean square
charge radius between isotope A and A′.

As the isotopic shift method allows one to extract the difference in
charge radius δ〈r2

c 〉A,A
′
, one needs a reference isotope with which the ab-

solute charge radii can be obtained. It is often possible to use as a reference
the mean-square charge radius of a stable isotope 〈r2

c 〉A
′
. For the 6,8He

charge radius determination, the charge radius of 4He, obtained from elec-
tron scattering was used. One can calculate the mean-square charge radius
of the isotope of interest using:

〈r2
c 〉A = 〈r2

c 〉A
′
+
δνA,A

′ − δνA,A
′

MS

KFS
, (1.20)

where 〈r2
c 〉A

′
is the mean-square charge radius of the stable isotope. The

root-mean-square radius is then given as rc =
√
〈r2
c 〉A.

In the case of the helium isotopes, the field constant KFS , as well as
the mass shift δνA,4MS are precisely calculated quantities from exact solution
of the three body (one nucleus, two electrons) Schrödinger equation where
relativistic and quantum electrodynamic effects have been treated pertur-
batively [Dra04].

The first charge radius measurement of a halo nucleus using isotopic
shift measurement was 6He performed at the Argonne National Laboratory
[Wan04]. The charge radius of 6He has been determined from the measure-
ment of the 23S1 - 33P2 transition frequency and found to be 2.054(14) fm
[Wan04]. The charge radius of 6He was remeasured afterwards, together
with 8He at the GANIL facility by the same group and the results [Mue07]
are shown in table 1.3. Both 6He charge radius values were consistent.
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Isotope Charge radius (fm)
6He 2.068(11)
8He 1.929(26)

Table 1.3: Charge radii of 6,8He as determined from isotopic shift measure-
ment [Mue07].

1.2 Nuclear halo and nuclear models

One of the central questions in nuclear physics is the understanding of the
relevant fundamental forces (electromagnetic, weak and strong) and how
they translate into the rich and complex observed phenomena. Over the
last century, since the first atomic and nuclear models have been developed,
more and more sophisticated approaches have been investigated. Some of
the best systems to test these models are halo nuclei.

In order for a model to successfully describe a halo nucleus, it needs to
reproduce the experimental properties of halos: very low valence neutron
separation energy, large matter radius and large difference between charge
and matter radii. These conditions pose a challenge to the various models.
However, halo nuclei are typically few nucleon systems and can be tackled
with a rigorous approach in theory. Halo nuclei therefore represent good
test cases for theory in extreme conditions, refining our understanding of
nuclear physics.

There are two classes of models aimed at describing nuclear halos: clus-
ter models and ab-initio methods. Cluster models group the neutrons (n)
and protons (p) in sub-structures called clusters. Examples of such clusters
include the deuteron (d = p+n), the triton (t = p+ 2n) and the alpha par-
ticle (α = 2p+ 2n). For 6,8He, there exist a wide variety of cluster models.
Some of these models describe 8He as α + 2n + 2n [Yos07, Nes01] structures
while others describe 6,8He as α + 2n and 4n structures [Var94]. As halo
nuclei are formed of a core and a valence nucleon substructure, it seems nat-
ural to describe them using cluster models. However, cluster models offer a
simplified picture of halo nuclei, by freezing parts of the nucleus, they could
neglect important effects. Example of such effects for 6,8He would include
changes in the size of α-particle core compared to the free α-particle due to
the interaction between the valence nucleons and the nucleons forming the
core.

Ab-initio (from first principle) methods, on the other hand, treat all the
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nucleons on the same footing. By considering nucleons as building blocks
in nuclei, ab-initio methods are the most fundamental approach to nuclei so
far. However, these methods become more computationally intensive as the
number of nucleons involved increases. As a result, ab-initio methods are
typically limited to light nuclei with A . 10. Among the limited number
of systems that ab-initio method can describe, halo nuclei are important
because of their extreme properties. The only halos that are described using
several ab-initio approaches are 6,8He. These approaches includes: the Green
Function Monte Carlo (GFMC) [Pie05], the No-Core Shell Model (NCSM)
[Cau06], the Coupled Cluster (CC) theory [Hag07a] and the Hyperspherical
Harmonics expansion (HH) [Bac09a].

Theoretical predictions for the charge radius of the halo nuclei 6,8He
were made using both ab-initio methods and cluster models. A previous
study [Wan04] found that several cluster models were under-predicting the
6He charge radius compared to the measured value. On the other hand,
the prediction from ab-initio methods were found to be in agreement with
the experimental charge radius of 6,8He [Mue07]. As the ab-initio methods
seem to provide more accurate predictions for the 6,8He charge radius than
the cluster models, in this thesis we will concentrate on the prediction of
ab-initio methods. Moreover, being the only halo nuclei with A . 10, 6,8He
are a unique test-bench for ab-initio methods. However, being less computa-
tionally intensive than ab-initio methods, cluster models can provide useful
predictions about experimental observables for system with A > 10.

As the study done in [Mue07], we will compare ab-initio method predic-
tions for the charge radius of 6,8He with the new values obtained using the
TITAN masses. Moreover, we go a step further than this study and also
compare the ab-initio method predictions for the binding energies with the
values calculated from the TITAN masses. By testing the ab-initio method
predictions for two different observables, one can find where the methods
limitations reside and possibly motivate improvement of the methods.

1.2.1 Nuclear potential for ab-initio methods

The interaction among nucleons forming the nucleus is governed by the
strong force and the theoretical description of the strong force is Quantum
Chromodynamics (QCD). However, QCD cannot be treated perturbatively
at the energy scales of the nucleus, which makes it a complex problem to
solve. Therefore, ab-initio method’s do not use quark and gluons as their
basic constituents, but instead use nucleons. By neglecting the quark in-
teraction within the nucleons, the nucleons become the effective degrees of
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1.2. Nuclear halo and nuclear models

only 2 body interaction

a) electromagnetic

3 body interaction

b) nuclear

2 body interaction and

Figure 1.9: Schematic of the interaction of three bodies due to a) the
Coulomb potential. b) the nuclear potential. The two-body interactions
between pairs of nucleons is symbolized by the black arrow. The three-body
interaction between three nucleons is symbolized by the red arrows. The
Coulomb potential is only generated from two-body interactions, while the
nuclear potential involves both two- and three-body interactions.

freedom of the theory.
To solve the quantum mechanical nuclear many-body problem, ab-initio

methods need thus to construct a Hamiltonian and a wave function. Then,
using these constructions, one calculates various properties of nuclei by solv-
ing the Schrödinger equation

HΨ = EΨ (1.21)

where H is a Hamiltonian that can be of the general form

H = T + V =
∑
i

p2
i

2m
+
∑
i<j

V 2N
ij +

∑
i<j<k

V 3N
ijk + ... (1.22)

T is the kinetic energy of the individual nucleons and V 2N
ij , V 3N

ijk are two and
three-nucleon potentials. Figure 1.9 shows a schematic of the interactions
between three bodies for the Coulomb and nuclear potential. Figure 1.9
shows (a) for the Coulomb potential, only two-body interactions are present.
However, this is not the case for the nuclear potential. When more than
two nucleons are involved, the different nucleons are also affected by three-
nucleon interactions (shown by the red arrows in figure 1.9 (b)). Higher
order potentials are typically neglected as the potential strength is expected
to decrease with the number of nucleons, N , involved [Mac07].
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1.2. Nuclear halo and nuclear models

Several modern models describe the strong interaction in terms of meson
exchange between structureless nucleons. The concept of meson exchange
as mediator of the strong force was first proposed by Yukawa [Yuk34] in the
form of the attractive potential

V (r) ∝ e−mπr

r
(1.23)

where the pion mass mπ sets the range of the interaction. The interaction
range is approximated using the Heisenberg uncertainty principle:

∆t∆E ≥ ~ (1.24)

where t is the time over which the meson exist and E is its energy. Using
equation (1.24), the range of interaction for the π exchange is estimated
to be ∆x ≈ 1/mπ = (140 MeV)−1 = 1.4 fm (using c = ~ = 1). The
modern version of the Yukawa potential is called the one-pion exchange
potential. This potential still features the radial exponential decrease, but
also includes terms to account for spin and isospin. The isospin is defined
as T = (Z −N)/2 where Z is the number of protons and N the number of
neutrons in the nucleus. Equation (1.22) shows that the nuclear potential
is divided mainly into two and three body potentials. In the following, we
describe these two types of potentials.

A potential that describes the interaction between two nucleons is called
a two-body (2N) potential. We previously showed that the interaction be-
tween two nucleons can be described using the one-pion exchange potential
(see figure 1.10 (a)). This figure shows the Feynman diagram for the inter-
actions of two nucleons (N) through the exchange of a π. In this diagram,
the direction of time in the process is shown by the arrow. The one-pion
exchange potential describes the long-range part of the nuclear potential,
but it fails to describe shorter ranges. Therefore, the shorter range of the
nuclear potential needs to be described with other types of interactions. For
intermediate ranges, the two-body potential can be described using higher-
order π interactions such as 2π (0.7 fm interaction range) (see figure 1.10
(b)) and 3π (0.5 fm interaction range) exchange. Both intermediate and
long range interactions are attractive in order to hold the nucleons form-
ing the nuclei together. However, at short ranges the two nucleon potential
becomes repulsive, a consequence of the Pauli exclusion principle between
the quarks. As the short range interaction cannot be explained using π-
exchanges, it has to be treated with contact terms (see figure 1.10 (c)),
which are direct nucleon-nucleon interactions (called contact-interaction) or
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1.2. Nuclear halo and nuclear models

N

N

N

N

π

2-body 

long range 

interaction

2-body 

intermediate range 

interaction

N

N

N

N

π

3-body 

interaction

π

∆

a) b) d)

N

N

N

N

N

N

π

2-body 

short range 

interaction

N

N N

N

c)

π

t

Figure 1.10: Example of two-body interactions Feynman diagrams: a) Long-
range one-pion interaction, b) intermediate-range two-pion interaction and
c) contact-term short-range two-pion interaction (symbolized by the filled
circle). Example of three-body interaction Feynman diagram: d) Two-pion
exchange between three nucleons through the first excited state ∆ of one of
the nucleon. The direction of time t is shown by the arrow. Nucleons are
denoted by N .

phenomenologically. Ab-initio interactions typically use a similar long-range
one pion exchange potential, while differences reside in their description of
intermediate and short range interaction. Since the nuclear potential is not
an observable, several two-nucleon potentials have been developed. These in-
clude the Argonne v18 [Wir95], the Charge-Dependant (CD)-Bonn [Mac01],
the Vlowk [Bog03] and the JISP16 [Mar09] potentials. All these potentials
are used in ab-initio methods to describe the properties of 6,8He.

Three-body potentials describe the interaction between three nucleons.
The three-body interaction is a consequence of the quark structure of the
nucleons. An example of an interaction forming a three-body potential is
shown in figure 1.10 (d). This shows that a π is exchanged between two
nucleons, one of which gets excited into a ∆ (see figure 1.10 (d)) for a short
time before releasing a π that mediates the interaction between the second
and third nucleon. A ∆ is the first excited of the nucleons and it has a mass
of 1232 MeV. Three-body potentials are important to accurately describe the
binding energy of nuclei with more than two nucleons [Pie01b]. In fact, in
order to properly explain the experimental values of light nuclei like 3H and
4He, three-nucleon potential are needed, since with two-nucleon potential
nuclei are usually underbound [Nog04, Jur09].

However, calculations involving a three-body potential are more com-
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1.2. Nuclear halo and nuclear models

plex and require longer computation time. Therefore, very few methods
have made calculations using such potentials [Pie01b], [Nav07], [Gaz06],
[Hag07a]. Examples of three-body potentials include the Urbana [Pud95],
Illinois [Pie01b] and the chiral three-body potentials [Epe02].

1.2.2 The construction of the wave function

Once a suitable potential is found, one needs a method to construct the
wave function and solve the Schrödinger equation. There are a number of
methods to perform this task and we briefly describe the ones that have
calculated the binding energies and radii of 6He and 8He. In section 4.4, we
compare the results from these calculations with experimental values.

1.2.2.1 Green function Monte Carlo

The Green Function Monte Carlo (GFMC) is an ab-initio method that cal-
culates the nuclear properties by solving the Schrödinger equation (for a
detail review, refer to [Pie05]). In order to construct its wave function, the
GFMC method uses a trial wave function obtained from Variational Monte
Carlo (VMC). This trial wave function is created using the variational ap-
proximation which states that the real ground state wave function is the one
that gives the lowest energy E0:

Etrial =
〈Ψtrial|H|Ψtrial〉
〈Ψtrial|Ψtrial〉

≥ E0 (1.25)

where Etrial is the ground state energy of the trial wave function. The trial
wave function Ψtrial =

∑
k ck|k〉 is a sum of states |k〉 with variable coeffi-

cients ck that are adjusted in order to minimize the energy Etrial [Pie01a].
The GFMC method then uses the Ψtrial that minimized the energy Etrial
to calculate the ground state energy E0. The ground state wave function is
obtained through the propagation in imaginary time of the wave function
under the Hamiltonian:

Ψ0 = lim
n∆t→∞

[
e−(H−E0)∆t

]n
Ψtrial (1.26)

where n is the number of iterations of step size ∆t. At the limit n∆t→∞,
Ψ0 is the true ground state of energy E0.

The GFMC method performs its calculations using the AV18 [Wir95]
two-body potential and the Illinois [Pie01b] as three-body potentials. The
AV18 potential is a sum of electromagnetic, one-pion exchange and short
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1.2. Nuclear halo and nuclear models

range phenomenological interactions. The Illinois potential [Pie01b] includes
a series of two-pions exchange terms as well as short range phenomenological
terms. The GFMC method calculates the binding energy of the ground state
and low-lying excited states of several nuclei in the range A = 3 to 12 with
an accuracy of 1-2% compared to the experimental binding energies.

1.2.2.2 No-core shell model

The No-Core Shell Model (NCSM) approach [Nav07], as any ab-initio meth-
ods, solve the many-body problem using equation (1.21). The NCSM uses
a truncated harmonic oscillator basis, which facilitates the construction of
the wave function. Once the wave function is constructed and the potential
chosen, the eigenvalues of the Schrödinger equation are obtained by matrix
diagonalization which needs in principle an infinite basis. The NCSM solves
the problem by dividing the infinite basis space in a model space, where the
calculation is performed, and an excluded space. It then derives an effec-
tive hamiltonian from the original hamiltonian that is used in the truncated
space to accelerate the convergence as a function of the model space size
determined by Nmax (maximal allowed harmonic oscillator excitation above
the unperturbed ground state).

One of the features with the NCSM approach is that its wave function
present a Gaussian (e−r

2
) asymptotic behaviour. We saw from the P.G.

Hansen and B. Jonson model [Han87] in equation (1.3), that the halo nu-
clei wave function decays exponentially. Having an exponential asymptotic
behaviour of the wave function is critical to have a correct representation of
halo nuclei. The consequence of using a faster Gaussian fall off in a trun-
cated model space is that it truncates terms in the wave function which
induces errors in the calculated quantities.

Several different potentials can be used in the NCSM, including chi-
ral effective theory two- and three-body potentials [Nav07]. However, cal-
culation of halo nuclei have been performed with two-body potential like
the Inside Non-local Outside Yukawa (INOY) potential [Dol03] and the
Charge-Dependant (CD)-Bonn 2000 potential [Mac01]. The INOY poten-
tial includes a short range phenomenological two-body potential that mimics
three-body interactions. The CD-Bonn 2000 is a two-body meson exchange
theory potential.

A recent development of the NCSM method is the No-Core Full Configu-
ration (NCFC) approach [Mar09]. This method is essentially a NCSM calcu-
lation where instead of deriving an effective potential in the truncated space,
it performs the calculations using the original Hamiltonian and a softer po-
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Figure 1.11: Jacobi coordinate system compared to the usual particle co-
ordinate system. Hyperspherical coordinates are based on the ~ηi Jacobi
coordinate, where the contribution of the centre of mass has been removed.

tential. For the 6He and 8He binding energy calculations, the NCFC uses
the JISP16 potential. This potential uses an “ab-exitu” approach, which
compared to “ab-initio” approaches, uses the calculated two-body proper-
ties from NCFC to generate a two-body potential that minimizes the effects
of three-body interactions. This allows rapid convergence of the calculation.

1.2.2.3 Hyperspherical harmonics expansion

The hyperspherical harmonic expansion (HH) method is an ab-initio method
that calculates the nuclear properties by performing a matrix diagonalization
on a wave function constructed using hyperspherical coordinates [Bar97].
Hyperspherical coordinates are a generalization in a multi-dimensional space
of the usual spherical coordinates in three dimensions. The usage of these
coordinates helps to shorten the computation time when intrinsic properties
of the nuclei such as the binding energies and charge radii are calculated
as it reduces the number of degrees of freedom by working in a coordinate
system that does not involve the centre of mass. This is a particularity of
the HH method as most ab-initio methods use particle coordinates, where
the origin of the coordinate system is situated outside the nucleus.

In order to remove the motion of the centre of mass (CM), the hy-
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1.2. Nuclear halo and nuclear models

perspherical harmonic expansion method converts particle coordinates into
Jacobi coordinates as shown in figure 1.11. The first Jacobi coordinate η0 is
linked to the CM by

~η0 =
1√
A

A∑
i

−→ri =
√
A ·
−→
RCM , (1.27)

where A is the number of nucleons in the nucleus and
−→
RCM is the centre

of mass position with respect to the particle coordinates origin. The other
Jacobi coordinates ηi, with i > 0, are defined by the relative position of the
different nucleons. As the Jacobi coordinates form an orthonormal set, one
can use them as basis to create an other sets of coordinates. One possibil-
ity are the hyperspherical ones. In general, one uses a radial coordinate,

the hyperradius ρ =
√∑

i η
2
i and a set of 3A-4 hyperangles [Bar97]. Once

constructed, the hyperspherical wave function presents a key feature to de-
scribe halo nuclei: an exponential asymptotic behaviour. This arises from
the exponential decay describing the hyperradial dependance of the wave
function.

The binding energy and radius of 6He were calculated using the so-called
Vlowk potential [Bog03]. This is a realistic potential just as the AV18 [Wir95]
and CD-Bonn [Mac01] but it needs much smaller Hilbert space to converge.
The Vlowk potential is derived from effective field theory [Mac07], which is
a low-energy approximation of QCD.

One important parameter of the Vlowk potential is the cut-off Λ. This cut-
off parameter defines the size of the basis in momentum space in which the
calculation is performed. In principle, once all the terms in the Hamiltonian
(equation (1.22)) are included, the calculation results should not depend
on the parameter Λ [Bog03]. However, if the calculations are restricted to
the use of two-nucleon potential, then varying the cut-off Λ one observes
Λ-dependence on the results which is primarily due to the missing short
range many-body potentials. Therefore, one can probe the effect of the
missing many-body potential by varying the cut-off parameter. Such test is
performed on the binding energy calculations of 6He (see section 5.2).

While the transformation into hyperspherical coordinates is beneficial
for nuclei with mass number A ≤ 6, the antisymmetrisation of Jacobi coor-
dinates becomes complicated when A > 6. Hence, hyperspherical harmonics
expansions have not yet been used for 8He.
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1.2. Nuclear halo and nuclear models
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Figure 1.12: Construction of the coupled cluster single-double (CCSD) cor-
related wave function using particle excitation.

1.2.2.4 Coupled cluster theory

Coupled cluster (CC) theory is an ab-initio method that calculates the bind-
ing energy of a nucleus using

EB = 〈Ψ0|e−THeT |Ψ0〉, (1.28)

where H is a general Hamiltonian, as in equation (1.22). In CC, the nuclear
wave function is constructed by using the ansatz |Ψ〉 = e−T |Ψ0〉 on an un-
correlated Slater determinant wave function |Ψ0〉 called the reference state.
T is an operator that imprints many-particles, many-holes excitation onto
the reference state, as shown in figure 1.12. This operator is expended
into clusters, where clusters are referred to as the Ti in the expression T =
T1 + T2 + ... . If T is truncated at the T2 level, then only singles-doubles
interactions are allowed and the model terminology used is coupled cluster
single double (CCSD).

The choice of the starting Slater determinant depends on the application.
For 8He, a Hartree-Fock (HF) wave function was chosen as it displays an
exponential asymptotic behaviour important for halo nuclei [Hag06]. To
calculate the properties of 8He, coupled cluster theory used the same Vlowk
potential as for the hyperspherical harmonic expansion calculation of 6He.

Coupled cluster (CC) theory [Hag07a] is exact only if T is expended up
to an A-body operator, but CCSD has proven to work very well for nuclei
which have a closed sub-sell. Since 8He has the p3/2 sub-shell closed (e.g.
16O and 40Ca [Hag07b]), it can be treated using CC.
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1.2. Nuclear halo and nuclear models

(The SRG-evolved asymptotic values for different @!
differ by only 10 keV, so the gap between the converged
bare or LS results and the SRG results is dominated by the
induced NNNN rather than incomplete convergence).
Convergence is even faster for lower ! values [19], ensur-
ing a useful range for the analysis of few-body systems.
However, because of the strong density dependence of
four-nucleon forces, it will be important to monitor the
size of the induced four-body contributions for heavier
nuclei and nuclear matter.

The impact of evolving the full three-body force is
neatly illustrated in Fig. 5, where the binding energy of
4He is plotted against the binding energy of 3H. The
experimental values of these quantities, which are known
to a small fraction of a keV, define only a point in this plane
(at the center of the X, see inset). The SRGNN-only results
trace out a trajectory in the plane that is analogous to the
well-known Tjon line (dotted), which is the approximate
locus of points for phenomenological potentials fit to NN
data but not including NNN [23]. In contrast, the short
trajectory of the SRG with the NN þ NNN interaction
(shown for ! " 1:8 fm#1) highlights the small variations
from the omitted four-nucleon force. Note that a trajectory
plotted for NN þ NNN-induced calculations would be a
similarly small line at the N3LO NN-only point.

In summary, we have demonstrated a practical method
to use the SRG to evolve NNN (and higher many-body)
forces in a harmonic oscillator basis. Calculations of
A $ 4 nuclei including NNN show the same favorable

convergence properties observed elsewhere for NN-only,
with a net induced four-body contribution in A ¼ 4 that
is smaller than the truncation errors of the chiral inter-
action. The soft SRG interactions are an alternative to the
use of Lee-Suzuki effective interactions in NCSM and
the HO matrix elements can also be used (after conversion
to a Slater-determinant HO basis as needed) for coupled
cluster and many-body perturbation theory calculations. A
more complete analysis of convergence and dependencies
for the energy and other observables for few-body systems,
as well as results for other interactions and choices of
generator in Eq. (2), will be given in a forthcoming pub-
lication [19].
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FIG. 5 (color online). Binding energy of the alpha particle vs
the binding energy of the triton. The Tjon line from phenome-
nological NN potentials (dotted) is compared with the trajectory
of SRG energies when only the NN interaction is kept (circles).
When the initial and induced NNN interactions are included, the
trajectory lies close to experiment for !> 1:7 fm#1 (see inset).
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Figure 1.13: Effect of varying the cut-off λ on the NCSM calculation re-
sults for the 4He and 3H binding energies Eb using evolved chiral two-body
potential (black line) and when including three-body potentials (red line).
The dotted line indicates the so-called Tjon-line. The cross shows the ex-
perimental value. Figure from [Jur09].

1.2.3 Summary of the methods and need for three-nucleon
potential

In this section we introduced four different ab-initio methods: the Green
Function Monte-Carlo, the No-Core Shell Model, the Hyperspherical Har-
monic expansion and the Coupled Cluster theory. In chapter 4 we compare
these different methods with the experimental values for the binding en-
ergies and the radii of 6He and 8He. We expect to see larger deviations
in the predicted binding energies for the methods that uses only two-body
potentials compared to the one that includes three-body potentials. The
effect of the missing three-nucleon potential has been studied using different
methods and potentials for 4He and 3H. In fact, there exist a correlation be-
tween the calculated binding energies of 4He and 3H using various potentials.
All these binding energies fall along a straight line called “Tjon-line”, after
J.A. Tjon who first observed this correlation in calculated binding energies
between 4He and 3H [Tjo75]. Figure 1.13 shows the Tjon-line (dotted in
the figure) derived from many-body calculations using CD-Bonn and AV18
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1.3. Other motivations for precise mass measurement: change in nuclear structure

potentials [Nog04]. Note that this line does not intersect the experimental
values for the binding energies. Figure 1.13 also shows the effect of varying
the cut-off parameter λ (analogous to the cut-off parameter Λ for Vlowk)
on the calculated binding energies of 4He and 3H. These calculations are
done by the NCSM method using evolved chiral potentials [Jur09]. When
only two-body potentials (NN) are considered, there are large variations in
the binding energies for both 4He and 3H with the cut-off λ. For none of
the cut-off parameters the calculated binding energies of 4He and 3H simul-
taneously agree with the experimental ones. However, once a three-body
potential (NNN) is included, the results changes weakly with λ, while offer-
ing closer values to experiment. Note that only the binding energy of 4He
changes with λ. This could be an effect of the missing four-body potential,
which are not present for the three-nucleons nuclei 3H. In summary, we an-
ticipate to see deviations between the calculated binding energies for 6He
and 8He compared to experiment when only two-body potentials are used.
Being the only method to use three-body potentials for 6He and 8He, the
GFMC is expected to give a better description of the experimental data.
More details are discussed in chapter 4, section 4.4.

1.3 Other motivations for precise mass
measurement: change in nuclear structure

One of the features of a nucleus is that its mass is lower than the sum of the
mass of its constituents. This difference in mass is called the mass defect
and is reflected in the binding energy of the nucleus. As we already saw
for halo nuclei, the binding energy of a nucleus depends on the nature of
the interaction within the nucleus. Therefore, explaining the binding energy
of nuclei is an important question in nuclear physics. There are several
approaches developed over the years at aiming to explain the binding energy
of nuclei.

Historically, the most well-known of these models is the liquid drop model
for which the binding energy is given by

EB(N,Z) = −avA+ asfA
2/3 + acZ(Z − 1)A−1/3 + asym(Z −N)2/A± δ(A)

(1.29)
where ai are coefficients and δ(A) is the pairing term. The term given by
the coefficient av is the volume term, asf represent a surface-tension term,
ac is a consequence of the coulomb interaction among nuclei and asym is
a phenomenological term to explain the larger binding energy of N = Z
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1.3. Other motivations for precise mass measurement: change in nuclear structure

nuclei. The pairing term δ(A) is negative for even number of protons and
neutrons, positive for odd number of protons and neutrons and zero if either
the number of protons or neutrons is odd. The saw-tooth pattern seen in
figure 1.5 for the one-neutron separation energy is caused by this pairing
term. Change in the binding energy along an isotopic chain are seen through
the two-neutron separation energy S2N .

Figure 1.14: Two-neutron separation energies from the AME03 [Aud03].
Shown are the drop in S2N due to the symmetry term in equation (1.29) for
N = Z, the drop at magic number N = 28, as well as the quenching of this
magic number for 45Cl. The solid circles are derived from measured masses,
while the open circles are extrapolated values. Original figure from [Aud03].

Figure 1.14 shows the S2N values for the isotopic chains in the range
N = 22 to 45 using the mass values from the AME03 [Aud03]. The steady
decrease in S2N with N is a consequence of the nuclear force saturation.
This results in a decrease in the binding energy when more nucleons are
added and it is taken into account in equation (1.29) by the surface term
asfA

2/3. An other feature of equation (1.29), shown in figure 1.14, is the
large gap in S2N caused by the symmetry term asym(Z−N)2/A for N = Z.
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1.4. Other motivations for precise mass measurement: test of the CKM matrix unitarity

However, one particular feature can be seen in figure 1.14 which cannot
be explained by the liquid-drop model, and it is the sudden drop in S2N

happening at N = 28. This is explained by the shell structure of nuclei
[Hax49, May49], which is analogous to the electronic shell structure found in
atomic physics. As in atomic physics, there is closed-shell structure leading
to enlarge spacing in energy between shells. The nuclear physics equivalent
of a noble gas is the so-called magic number nuclei, which are those with N
and/or Z = 2, 8, 20, 28, 50, 82, 126.

However, one of the main differences between electronic and nuclear
structure, is that the later involves two different particles (neutrons and
protons) that interact with each another. As a consequence, when there is
a large N -to-Z imbalance, the magicity of a certain nucleon number (either
N or Z) start to fade. This is shown in figure 1.14, by the quenching of the
observed drop in two-neutron separation energy of N = 28 for 45Cl. At the
same time, new magic numbers start to emerge, like N = 16 [Oza00] which
was discovered through a survey of the SN of neutron-rich nuclei. This
migration of magic numbers due to changes in the shell structure have been
studied extensively [Kan02] and an accurate knowledge of atomic masses
has proven to be a critical and sensitive tool [Gue06, Hak08].

1.4 Other motivations for precise mass
measurement: test of the CKM matrix
unitarity

The Standard Model (SM) of particle physics, which describes the interac-
tions of elementary particles, is currently tested by many experiments. One
of the tests of the Standard Model is the verification of the unitarity of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [Cab63, Kob73]. Within the
Standard Model, the quarks are the basic constituents that are affected by
both the strong and weak interactions. The different types of quarks can be
divided in two groups that have identical charges and different masses. The
first group comprise the up, charm and top quarks and the second group
the down, strange and bottom quarks. These quarks represent the eigen-
states of the strong interaction. However, these are not the eigenstates of
the weak interactions and the coupling matrix between the eigenstates of
these two interactions is called the CKM matrix. This matrix couples the
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weak eigenstates with the strong eigenstates as follows: |dw〉|sw〉
|bw〉

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 |ds〉|ss〉
|bs〉


where d, s and b are the down, strange and bottom quarks respectively and
w, s respectively denotes the weak and strong eigenstates. The square of
each CKM matrix element Vij represents a probability of transition of a
quark state under the weak interaction. For example, |Vud|2 is the proba-
bility of a u-quark mixed into a d-quark. Under the Standard Model as-
sumption that there are only six types of quarks, the CKM matrix has to
be unitarity: ∑

i

|Vui|2 = |Vud|2 + |Vus|2 + |Vub|2 = 1. (1.30)

The violation of the CKM matrix unitarity could be caused by quantum
loop corrections in the quark mixing resulting in unobserved new particles
such as the neutral gauge boson Zχ [Mar87]. From the last compilation
of all available experimental data, including all theoretical corrections, the
CKM matrix agrees with unitarity [Har09]:∑

i

V 2
ui = 0.99995± 0.00061. (1.31)

However, this was not always the case, as previous evaluations the CKM
matrix were found to disagree with unitarity by 2.4σ [Har05]. This deviation
was corrected with re-evaluations of the Vus [Sci08] and Vud [Har09] matrix
elements (note that Vub matrix element, due to its small size, contributes to
a negligible 0.001% to unitarity).

Measuring the Vus and Vub terms is the domain of particle physics. How-
ever, the Vud term only involves the up and down quarks, which are the con-
stituents of protons (p = u+u+d) and neutrons (n = u+d+d). Therefore,
this term is accessible through nuclear physics experiments and it can be de-
termined from the measurement of the ft-values of super-allowed 0+ → 0+

β-decays. The ft-value, or “comparative half-life”, is given by the prod-
uct of the partial half-life of the decay with the phase-space factor, f . The
super-allowed 0+ → 0+ β-decays are decays between states of spin J = 0 and
positive parity, hence Jp = 0+. This type of transition, where the change in
spin ∆J = ∆S = ∆L = 0, is called a Fermi transition. In the Fermi theory
of β-decay, the ft-value is given by [Kra88]:

ft =
K

G2
V |MF |2

(1.32)
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where GV is the vector coupling constant, K is a numerical constant and
MF is the Fermi matrix element. The vector coupling constant is linked to
the weak-interaction coupling constant GF of a purely leptonic muon decay
through the matrix element Vud:

GV = VudGF . (1.33)

For nuclei with isospin T = 1, MF =
√

2.
The conserved vector current (CVC) hypothesis asserts that the ft-value

should be independent of the parent and daughter nuclei of a 0+ → 0+ β-
decay. This means that there is no coupling between the vector components
of the weak and the strong interactions. In reality, equation (1.32) needs to
be modified to account for several effects. Firstly, the isospin is not an exact
symmetry in the nuclei, which means that the Fermi matrix element needs
to be corrected (e.g. for T = 1 transitions, MF =

√
2(1− δc)), where δc

is called the isospin-symmetry-breaking correction. Secondly, the ft-values
needs to be adjusted to account for radiative corrections that are nucleus-
dependant, δR, and nucleus-independent, ∆V

R . With these corrections, the
ft-values for T = 1 becomes:

Ft = ft(1− δc)(1 + δR) =
K

2|Vud|2G2
F (1 + ∆V

R)
= constant (1.34)

The experimental part of the Ft-value comes from the half-life T1/2, the
branching ratio BR and the Q-value of the 0+ → 0+ transitions [Har05].
The Q-value of a nuclear reaction is given by the difference of mass between
the reactant and the product:

Q = m(reactant)−m(product). (1.35)

The correctness of the Conserved Vector Current (CVC) hypothesis can
be verified by taking the weighted mean of the measured Ft-values and
looking for non-statistical deviations from the mean. However, the current
data set is consistent and is in agreement with the CVC at the 1.3×10−4

level [Har09]. The matrix element Vud is then calculated from the average
Ft-value,

|Vud|2 =
K

2G2
F (1 + ∆V

R)Ft
, (1.36)

of 13 well-known 0+ → 0+ transitions [Har09].
The importance of high accuracy mass measurements comes from the

calculation of the statistical rate function f , which is strongly dependent on
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the Q-value of the transitions. Therefore, direct mass measurements, which
lead to a precise determination of Q-values, play an important role in the
determination of Vud.

In 2005, after measuring the Q-value for the super-allowed 0+ → 0+

emitter 46V [Sav05], the Canadian Penning Trap (CPT) experiment found
a 2.19 keV difference between their results and the last compilation of all
available experimental data. After further investigation, they discovered a
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Figure 1.15: Q-value difference between [Von77] and the weighted average
of all other data. The doted line represents the uncertainty (from [Sav05]).

set of seven measurements [Von77] which measured Q-values were off by
2 to 5σ from the rest of the compilation data (see Figure 1.15). After
removing the inconsistent data, the new value of Vud became 0.9745(16) ,
which brought the CKM matrix closer to unitarity:

|Vud|2 + |Vus|2 + |Vub|2 = 0.9985(12) (1.37)

compared to the previous result of 0.9966(14) [Har05]. Since the mea-
surement from [Sav05], the 46V decay Q-value has been confirmed by the
JYFLTRAP experiment [Ero06] and deviations of the 42Sc [Ero06] and
50Mn, 54Co [Ero08] decay Q-values with respect to [Von77] has been ob-
served.

Currently, the dominant source of uncertainty in the Vud determination
comes from the theoretical correction δc, which does not currently reside
on solid footing. Depending on the calculation method used, conflicting
theoretical correction δc results are obtained. In their 2005 Vud evaluation,
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Towner and Hardy showed that when using δc based on Wood-Saxon cal-
culations [Tow77, Tow02] a Ft = 3072.6(8) s is obtained, while calculation
using Hartree-Fock eigenfunctions [Orm95] leads a higher value of Ft =
3074.5(8) s. In the most recent evaluation [Har09], Towner and Hardy indi-
cated that the previous Hartree-Fock calculations could be, in their words,
flawed. Therefore such inconsistency requires the need for an independent
calculation of the correction δc. Such calculations are on their way and there
is also a new calculation approach being proposed [Aue09, Lia09, Mil09]. On
the experimental side, more precise and accurate data are needed to be used
as test-bench for these different calculation approaches.

One of the nuclei for which the correction δc is important is 74Rb. The
most important experimental source of uncertainty on this decay comes from
the atomic mass of 74Rb [Kel04]. In order to have a similar error on the Q-
value for this decay, as the other β-decays presented in [Har09], one needs
to perform a mass measurement of this nucleus to a level of precision of
5×10−9. An accurate mass measurement at that level of precision can only
be achieved using a Penning trap mass spectrometer. The mass measure-
ment of 74Rb is planned to be measured at the TITAN facility using highly
charged ions.
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Chapter 2

The experimental setup

The TITAN (TRIUMF Ion Trap for Atomic and Nuclear science) facility
[Dil06] includes a Penning trap mass spectrometer capable of performing
high precision mass measurements on radioactive species. Example of such
measurement are the halo nuclei 11Li [Smi08b], 11Be [Rin09a], 8He [Ryj08]
and 6He. The TITAN facility is situated in the low-energy section of the

TITAN

TRINAT

p
500 MeV
proton beam

Target

Mass
separatorLow energy

beam line

Lifetime
experiments

RFQ post
accelerator

DRAGON

TUDA

8p

ISAC hall

Figure 2.1: Layout of the TITAN facility inside the ISAC experimental hall
at TRIUMF.

Isotope Separator and ACcelerator (ISAC) experimental hall [Dom00] of
TRIUMF, as indicated in figure 2.1. At TITAN, there are various research
activities taking place; yet the possibility to perform high-precision mass
measurements of highly-charged unstable ions (HCI) is the distinctive fea-
ture of TITAN. The use of HCI is due to the fact that the precision level of
the measurements linearly increases with the charge state.

High-precision mass measurements are carried out at TITAN, which re-
quire a preparation of the ion through several processes. The ISAC continu-
ous ion beam is delivered to TITAN. There, it is cooled and bunched using a
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off-line ion source

SCI

SCI

a) SCI

SCI

b) HCI

Figure 2.2: The TITAN experimental setup which includes a RFQ, a high-
precision Penning trap, an EBIT and an off-line ion source. a) Shown in
red is the path of the beam when mass measurement on singly charge ions
(SCI) is performed. b) In blue is the path for highly charged ions (HCI)
mass measurement.

gas-filled linear radio-frequency quadrupolar (RFQ) trap ([Smi06, Smi08a]).
The subsequent step depends on whether a mass measurement using singly
charged ions (SCI), or highly charged ions is performed. The ions can either
be transferred to an electron-beam ion trap (EBIT) [Fro06], where charge
breeding takes place (blue path in figure 2.2) or directly sent to the Penning
trap (MPET) where the mass of the ion of interest is determined (red path
in Figure 2.2).

In this chapter, we present how an ion beam is produced and delivered
by the ISAC facility, how the beam preparation devices (i.e. the RFQ, the
EBIT and the transport optics) are employed, and how the mass of an ion
is determined by the TITAN Penning trap. The Penning trap is presented
in more detail as this device is at the core of this thesis.

2.1 Beam production and separation at ISAC

The Isotope Separation and ACceleration (ISAC) facility produces radioac-
tive ion beams by the Isotope Separator On-Line (ISOL) method [Dom02].
In this well-established method, unstable ions are produced by bombarding
a thick target, such as the one shown in figure 2.3, with a 500 MeV con-
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2.1. Beam production and separation at ISAC

tinuous proton beam coming from the TRIUMF cyclotron. The current on
target of that beam can go as high as 100 µA. Once produced, different nu-

Figure 2.3: The ISAC production and separation room. This room includes
two target stations, target and ion sources, a pre-separator and a high-
resolution (m/∆m = 3000) magnet separator. Also shown is a rendering of
the target and a surface ion source.

clei diffuse out of the target and are then ionized by an ion source [Dom02].
Subsequently, the ionized isotopes are extracted and formed into a beam
which is electrostatically accelerated to an energy of 12 to 60 keV. It is later
guided to a two-stage dipole magnet separator that include a pre-separator
and a high-resolution magnet separator (figure 2.3). This separates and se-
lects the ions of interest according to their mass-to-charge ratio (m/q) at a
resolving power of typically m/∆m = 3000. Finally, the separated beam is
delivered to the ISAC hall where various experiments are located.

The two species of interest to this thesis, 6He and 8He, are produced
using a SiC target and ionized by the so-called Forced Electron Beam Ion
Arc Discharge (FEBIAD) source [Bri08]. Using this technique, ionization is
done via a plasma generated by injecting atomic gas into a chamber where
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Isotope Isotope ∆ (keV) contaminant cont. ∆ (keV) m/∆m
6He 17 592.09(6) 6Li 14 086.88(2) 1600
8He 31 609.74(12) 8Li 20 945.80(11) 700

Table 2.1: Resolution m/∆m required to separate ISAC contaminants for
6He and 8He. The 8Li mass excess (∆) is from [Smi08b] and the others are
from this work.

a hot filament produces electrons. The feature of this technique is that it is
non-selective and can ionize various gas molecules in the chamber. This leads
to an ion beam with possible isobaric contamination. However, because of
their light mass, there is very limited contamination close to the mass of 6He
and 8He in the beam. In fact, the two contaminants with the closest mass to
6He and 8He, were 6Li and 8Li. Their mass excess, together with the mass
excess of the ions of interest, are presented in table 2.1. The relative mass
difference of 6Li compared to 6He is 1600, while for 8Li compared to 8He it
is 700. Since the relative mass difference m/∆m of both species is less than
the resolving power of the mass separator, which is 3000, they can both be
separated from the helium isotopes.

2.2 Beam preparation: the radio-frequency
quadrupole (RFQ) cooler and buncher

The RFQ is a beam preparation device for accumulating, cooling and bunch-
ing the continuous ion beam coming from either the TITAN off-line ion
source or ISAC. Prior to its injection in this device, the beam is decelerated
to tens of eV which is achieved by floating the electrode structure of the
trap on a high voltage (HV) potential slightly below the beam energy. This
allows one to stop and accumulate the beam in the RFQ.

In the RFQ the beam energy spread is dissipated through collisions with
inert buffer gas. This leads to cooling of the beam, thus reducing its trans-
verse and longitudinal emittance. The emittance is a measure of the depar-
ture of the beam properties from the ideal case. Ideally, all particles within
the beam should travel at the same velocity and along the same direction.
However, in reality it is not the case and leads to a diverging beam with a
certain energy spread. The “divergence” of the beam is quantified by the
transverse emittance which measure the area occupied by the beam in the
x-θx space. The TITAN RFQ has been designed in order to accept an ISAC
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Figure 2.4: Top: Schematic sideview of TITAN’s RFQ which is composed
of four 24-segmented rods that create a longitudinal trapping potential. A
well allows for beam accumulation and subsequent bunching. A square-
wave RF is applied to the opposite segments to provide radial confinement.
Bottom: Schematic potential distribution for accumulation (solid line) and
bunch extraction (dashed line).

beam with ε99% = 50 π mm mrad transverse emittance at 60 keV energy
[Smi08a]. The transverse emittance of the beam leaving the RFQ is ap-
proximately ε99% ≈ 10 π mm mrad at 1 keV. The measured full width half
maximum (FWHM) of the beam energy spread at this energy is typically
around 6 eV [Cha09].

The typical buffer gas used to cool the beam is helium, due to its inert
nature and light mass allowing favorable momentum transfers for efficient
energy spread dissipation. However, for the 6,8He mass measurements the
beam was cooled using hydrogen to avoid resonant charge exchange reac-
tions. Figure 2.4 shows that the TITANs RFQ is composed of a four rod
structures on which a radio-frequency quadrupolar field is applied to create
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2.3. Beam preparation: beam transport to the Penning trap

a net centring force. This force is strong enough to counter the dispersion of
the beam caused by reactions with the buffer gas. Note that the centring of
the ion depends not only on the applied RF frequency and amplitude, but
also on its mass. Therefore, the RFQ can be operated with a certain mass
selectivity.

The four rods are longitudinally segmented in 24 segments that provide
a potential gradient which guides the ions towards a potential well near the
end of the structure. Hence, the beam is accelerated along the RFQ and
accumulated in the well for subsequent bunching. Bunching is achieved by
periodically switching the voltages at the 22th and 24th segments.

As a final remark, inside the RFQ, the beam can charge exchange with
the residual gas and this leads to beam loss and potentially generates other
ions which contributes to produces beam contamination. However, part
of that contamination can be removed from the RFQ by the choice of RF
amplitude and RF frequency. This mass selectivity is sufficient to remove
the identified contaminants, such as H2O, from the 6,8He beam.

2.3 Beam preparation: beam transport to the
Penning trap

The beam line connecting the RFQ and the Penning trap allows for an
efficient, close to 100%, transmission of the ions between the two traps.
This section describes ion optical elements that are discussed in more detail
later in the text. Figure 2.5 shows a schematic of the transport beamline
between the RFQ and the Penning trap. Some of the main components
include a pulse drift tube (PB5) situated after the RFQ, two 45 degrees
benders (B1) connecting the vertical and horizontal sections, a time-of-flight
gate, one micro-channel plate (MCP) detector for beam diagnosis, a Lorentz
steerer (LS) and another pulse drift tube (PLT). In this section we follow the
progression of the ion beam as it goes through these various components.

Initially, upon extraction from the RFQ the ion beam is accelerated into
the pulse drift tube (PB5). The purpose of this device is to transfer the beam
from the high voltage (HV) RFQ section to the beam line that is at ground
potential. Moreover, it sets the transport beam energy. In detail, the pulse
drift tube shares the same potential as the RFQ but uses an off-set of 1 to 2
kV below the RFQ (HV) potential. Hence, the ion bunch is accelerated from
the RFQ into the PB5 and gains 1 to 2 keV kinetic energy. While the bunch
is inside the drift tube, it is switched to the ground potential. Subsequently,
when the bunch leaves the PB5, it is not accelerated and keeps its kinetic
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Figure 2.5: Block diagram of a section of the TITAN beam line. Shown
are the RFQ, RFQ pulse drift tube (PB5), the two 45 degrees benders, the
time-of-flight gate (TOF gate), the MCP0 and the Penning trap magnet.
Inside the magnetic field, we show the Lorentz steerer (LS), MPET pulse
drift tube (PLT) and the Penning trap (MPET).
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energy constant. This process does not perturb the beam and allows for its
transportation at an adjustable energy of 1-2 keV.

Two 45 degrees benders are located between the vertical and horizontal
sections of the beam line (see figure 2.5). The role of these benders is
to electrostatically deflect the ions between the two sections with minimal
losses. This is done by applying a potential difference ∆B1 between two
sets of spherical plates. The transfer efficiency through the bending section
is particularly sensitive to the potential on these electrodes with respect to
the beam energy. In section 3.4.3.2 we show how we can estimate the beam
energy from the bend potential difference ∆B1.

The beam is further transported using conventional ion optics elements
and enters a so-called time-of-flight (TOF) gate. The purpose of this gate
is to reduce remaining non-isobaric contamination before the Penning trap.
The principle of this gate is simple; since all ions are transported at the
same energy, ions of different mass arrive at different times at the position
of the gate. Unwanted species can then be removed by applying a deflecting
potential on a pair of electrodes. The graph in figure 2.5 shows how one
single species (A+

2 ) can be selected to be transferred by applying a non-
deflecting potential Vs during a time interval when it arrives at the steerer
plates and a deflecting potential during the rest of the time to cut the
contaminant ions (A+

1 and A+
3 ). The mass resolution of this gate is m/∆m

= 20, which is enough for example to resolve 6Li from 7Li.
Prior to the capturing of the ions in the Penning trap, there are two units

of ion optics that the ions pass through: the Lorentz steerer [Rin07] and the
pulse drift tube (PLT). The purpose of the Lorentz steerer is to prepare the
ions on an initial magnetron radius before the injection in the trap. In sec-
tion 2.4.4, we show that this preparation is important for the measurement
process in the Penning trap. The Lorentz steerer radially displace the ions
using perpendicular quadrupolar electric and magnetic fields as shown in
figure 2.6. The magnetic field is produced by the Penning trap magnet and
is axial with respect to the axis of incoming ions. The quadrupolar electric
field is produced by the application of a potential offset, ∆VLS , on two oppo-
site segments of the Lorentz steerer. The displacement, d, of the ions upon
leaving the Lorentz steerer is proportional to the offset potential. Note that
ions are decelerated when entering the Lorentz steerer by the application of
a potential that is about 65 V below the beam energy.

After the ions leave the Lorentz steerer, they enter a pulse drift tube.
The purpose of this device is to reduce the ion bunch kinetic energy such
that it has minimal energy once it is captured in the Penning trap. This is
done by biasing the pulse drift tube at about 65 V below beam energy, just
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Figure 2.6: Schematic of the Lorentz steerer which comprise a quarted cylin-
drical electrode axially aligned with a magnetic field B. We show the po-
tential needed to steer the beam and the corresponding electric quadrupolar
field produced. The displacement, d, of the beam is proportional to the
offset potential, ∆VLS .
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as the Lorentz steerer. When the ions are in the drift tube, it is switched
down to -65 V. The ions then leave the drift tube with 65 eV of kinetic
energy. This is the energy needed for the ions to stop when they reach the
trap centre.

2.4 Beam preparation: the electron beam ion
trap (EBIT)

The purpose of the EBIT is to increase the charge state of the singly charged
ions for mass measurements in the Penning trap. The TITAN EBIT pro-

Figure 2.7: Schematic of TITAN’s EBIT trapping region. Axial trapping
is achieved by the application of a lower potential on the central drift-tube
electrode segment with respect to the two end cap electrodes. The radial
confinement of the ions is achieved by the 4-6 T magnetic field produced by
Helmholtz coils and the compressed space-charge potential created by the
electron beam.

duces and confines highly charged ions (HCI) by bombarding the singly
charged ions with an intense, high current electron beam (figure 2.7). As
the ion beam enters the trap from the collector side (see figure 2.7), it is
axially confined by applying higher potential on the end cap cylindrical elec-
trodes (indicated by a (+)) than the central trap electrode (indicated by a
(-)). Inside the trap a strong (4-6 T) magnetic field, generated by a pair of
Helmholtz coils, compresses and confines radially both the ion and electron
beams.
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2.5. The mass measurement Penning trap

A step-wise increase in charge state is achieved via a successive impact-
ionization of the trapped ions with smaller ionization energy than the elec-
tron beam energy. The presence of the strong axial magnetic field at the
trap centre compresses the electron beam radially, increasing the electron
beam current density.

The maximum charge state of the ion beam is limited by the electron
beam energy. To successfully strip off the electrons the beam energy has to
be higher than the ionization potential. As electrons continue to be removed
higher electron beam energy is required to remove an additional electron.
Since November 2008, the EBIT is fully operational and HCI ions have been
captured and masses have successfully been measured in the Penning trap.

2.5 The mass measurement Penning trap

The Penning trap is the principal trap of the TITAN facility where mass
measurements are performed. Penning trap mass-spectrometer determine
the mass M of a trapped ion of charge state q by measuring its cyclotron
frequency

νc =
1

2π
qB

M
(2.1)

in a magnetic field B. In the trap the ions are confined in three-dimensions
by overlaying a quadrupolar potential and a magnetic field. The quadrupo-

v

z0

r0

Ring

electrode

End cap

electrode

V0

B

Figure 2.8: Schematic diagram of an ideal Penning trap including: a one-
sheet hyperboloid forming the ring electrode, a two-sheet hyperboloid form-
ing the end caps and an axial magnetic field.
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lar potential is created by applying a potential difference V0 between two
orthogonal hyperboloids of rotations: one forming the ring electrode and the
other forming the end caps electrodes, as shown in figure 2.8. This potential
configuration axially traps the ions. The radial trapping is provided by an
axial magnetic field, B.

This section discusses the various aspects of the ideal Penning trap such
as the ion confinement and the ion motion. Afterwards, the mass measure-
ment by time-of-flight resonance technique, used by the TITAN Penning
trap is described.

2.5.1 Three-dimensional confinement

In this section we outline what type of potential and magnetic field can be
used in order to confine a charged particle in three dimensions. Generally, in
order to trap a charged particle in three dimensions a potential configuration
that exerts such force

~F = −e~∇V, (2.2)

is necessary. A convenient choice of potential is a harmonic potential

V = ax2 + by2 + cz2. (2.3)

To obey Laplace’s equation, ∇2V = 0, the sum of the different coefficients in
(2.3) must be zero. This means that one of the coefficients must be negative.
By having a cylindrical symmetry around the z-axis, one can simplify and
set a = b, which leads to the condition a = -c/2 and:

V = c(z2 − r2/2), (2.4)

where r =
√
x2 + y2 is the radial position of the particle.

In order to have an equipotential electrode surface, equation (2.4) must
satisfy:

V (surface) = c(z2 − r2/2) = constant (2.5)

This is the equation of two hyperboloid of revolution; where one points along
the axial direction and the other along the radial direction. This is shown
in figure 2.8. The value of constant c is set from the potential difference
between the two hyperbolas:

V0 = V (z0, 0)− V (0, r0) = c(z2
0 + r2

0/2) (2.6)

c =
V0

2d2
0

, (2.7)
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where d0 =
√
z2

0/2 + r2
0/4 is defined as the characteristic length of the trap.

Therefore, the potential produced by the trap is:

V =
V0

2d2
0

(z2 − r2/2). (2.8)

Figure 2.9 shows the feature of such potential; there is no three-dimensional

Figure 2.9: Typical quadrupolar electric potential of a Penning trap. See
text for details.

minimum. Therefore, such potential cannot confine an ion in three dimen-
sions. This is a direct consequence of the Laplace equation which does not
allow local minima or maxima except along the boundaries.

This can be overcome in two possible ways, allowing one to confine a
charged particle in three dimensions. Firstly, by alternating the sign of V0

the ions will experience an average central force. This method is employed
in the so-called Paul trap. Please refer to [Gos95] for a detailed discussion
about Paul traps. The second method uses a magnetic field along the axial
direction to radially trap the ions. This method is used in a Penning trap.

2.5.2 The TITAN Penning trap electrode structure

This section shortly introduces the various electrodes forming the TITAN
Penning trap. Figure 2.10 (a) is a schematic of the TITAN Penning trap
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Figure 2.10: a) Illustration of the TITAN Penning trap electrode configura-
tion formed by the hyperbolic ring (1), end cap electrodes (2), tube (3) and
guard (4) correction electrodes. The RF is applied on (4). b) Application
of a quadrupolar excitation on the correction guard electrode ((4) in a).

electrode structure. The trap is composed of two hyperboloids of revolution
forming one ring (label (1) in figure 2.10) and two end cap electrodes (2).
The ions are axially trapped by a harmonic quadrupole electrostatic poten-
tial produced by a potential difference, V0, between the ring and the end cap
electrodes, as shown in figure 2.10. Some anharmonicities in the trapping
potential are introduced by the holes in the end-cap electrodes and by the
finite size of the hyperbolic electrodes. Two sets of correction electrodes
(labeled (3) and (4) in figure 2.10), are used to compensate for higher-order
electric field components (for more detail see section 3.3). The radial con-
finement is provided by a magnetic field B. Figure 2.10 (b) shows how the
quadrupolar excitation necessary for the mass measurement by TOF-ICR
technique is applied on the segmented correction guard electrode (see section
2.4.4 for more details).

2.5.3 Ion motion in an ideal Penning trap

In order to understand how mass spectrometry using a Penning trap is
performed, one first needs to study the ion motion in such traps. In this
section we derive the equations of motion for a charged particle in a Penning
trap. We present the different eigen motions and calculate the energy of
charged particle in a Penning trap.

In the trap, the ions are affected by the force generated by the quadrupo-
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lar electric field ~E = −~∇V :

~Fe = −q~∇V = −qV0

d2
0

(~z − ~r/2) (2.9)

and the force produced by the homogenous axial magnetic field ~B = Bẑ:

~Fm = −q~v × ~B = −q~̇r ×Bẑ (2.10)

The dot denotes partial derivative in time. Since the magnetic field is along
the z-axis, the magnetic component of the Lorentz force does not affect the
axial ion motion.

There are several methods to derive the equation of motions inside a Pen-
ning trap [Kre91]. In this thesis, we use a Newtonian mechanical approach.
Using Newton’s second law on equation (2.9) and (2.10) in cylindrical coor-
dinates, leads to the axial and radial equations of motion:

z̈ = − qV0

Md2
0

z (2.11)

~̈r =
qV0

2md2
0

~r − qB

M
~̇r × ẑ. (2.12)

The first equation represents an axial harmonic motion of angular frequency:

ωz =

√
qV0

Md2
0

, (2.13)

produced by the potential difference V0. The second equation is more com-
plex and in order to solve it, we write the radial part in cartesian coordinates:

ẍ− ωcẏ −
ω2
z

2
x = 0 (2.14)

ÿ + ωcẋ−
ω2
z

2
y = 0, (2.15)

where we used equation (2.13) and ωc is the cyclotron frequency:

ωc =
qB

M
. (2.16)

Using u = x+ iy decouples equation (2.14) and (2.15) and gives:

ü = −iωcu̇+
ω2
z

2
u. (2.17)
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With the ansatz u ∝ e−iω±t+α± , one finds the two radial eigenfrequencies

ω± =
ωc
2
± ωc

2

√
1− 2ω2

z

ω2
c

(2.18)

and the following parametric equations for x(t) and y(t)

u(t) = r+e
−iω+t + r−e

−iω−t (2.19)
x(t) = r+ cos (ω+t) + r− cos (ω−t) (2.20)
y(t) = −r+ sin (ω+t)− r− sin (ω−t) (2.21)

where we set the phases α+ = α− = 0 to simplify the expression. Equation (2.20)

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5
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x HmmL
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Hm

m
L

r--r+r-+r+

Figure 2.11: Example curve of the epitrochoid motion of an ion in a Penning
trap, with parameters: r− = 1 mm, r+ = 0.2 mm, ω− = 1 s−1 and ω+ = 20
s−1. See text for details.

and (2.21) correspond to the parametrization of an epitrochoid. An example
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νc 9.451 MHz
ν+ 9.445 MHz
νz 339 kHz
ν− 6.1 kHz

Table 2.2: Different frequencies ν = ω/2π for a 6Li+ ion in TITAN’s Penning
trap.

curve is shown in figure 2.11 (note that the ω± and r± do not correspond to
typical values for an ion in a Penning trap and were chosen for demonstra-
tion).

The angular frequencies ω± obey the following relationships:

ωc = ω+ + ω− (2.22)
ω2
c = ω2

+ + ω2
− + ω2

z (2.23)
ω2
z

2
= ω+ω− (2.24)

Table 2.2 lists the various frequencies for a 6Li+ ion in a Penning trap
with a magnetic field of strength B = 3.7T, a potential difference V0 = 35V
and a trap characteristic length d0 = 11.2 mm. From the frequencies listed
in table 2.2, we observe that 2ω2

z
ω2
c

= 2.5×10−3 � 1. This fulfills the condition
of a Taylor expansion of (2.18), which gives:

ω+ ' ωc −
ω2
z

2ωc
(2.25)

ω− ' ω2
z

2ωc
, (2.26)

where ω+ and ω− are respectively the reduced cyclotron and magnetron
frequencies. The reduced cyclotron frequency is a consequence of the re-
pulsive radial electric potential that reduces the cyclotron frequency by a
small amount ω−. The magnetron frequency is a slow precession at the drift
velocity ~vd caused by the cross product of the electric and magnetic fields:

~vd =
~E × ~B

B2
=

ω2
z

2ωc
~r × ~z = ω−~r × ~z. (2.27)

The following quantities are the potential and kinetic energies of the
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ion’s radial motion in the Penning trap:

Epotr = qV = −M
4
ω2
zr

2 = −M
2
ω−ω+

(
r2

+ + r2
− + 2r+r− cos (ωct)

)
(2.28)

Ekinr =
m

2
ṙ2 =

M

2
(
ω2
−r

2
− + ω2

+r
2
+ + 2r+r−ω+ω− cos ((ω+ − ω−)t)

)
. (2.29)

Typically, the reduced cyclotron and magnetron frequencies of the ions are
such that ω−/ω+ ∼ 10−3. Depending on the relative size of the magnetron
and the reduced cyclotron radius, the ion energy in the radial plane is more
or less potential or kinetic energy. Equations (2.28) and (2.29) shows that
for a large magnetron radius (r− � r+), the ion energy is mainly potential.
At the opposite, when the reduced cyclotron radius is larger (r− � r+)
the ion energy is mainly kinetic. This is an important fact that is used in
Penning trap mass measurement via time-of-flight ion cyclotron resonance
(TOF-ICR) technique.

2.5.4 The TOF-ICR mass measurement technique

The basic concept of the TOF-ICR technique is to determine the mass of an
ion by measuring its cyclotron frequency. However, the cyclotron frequency
cannot be measured directly because it is not the frequency of one of the
ion’s eigenmotions. Nevertheless, access to the cyclotron frequency can be
gained using a quadrupolar excitation of the ion motion of the form

VRF =
Vq
2a2

cos(ωRF + φRF )xy, (2.30)

where Vq is the amplitude of the RF at a radial distance a from the axis of
the trap and φRF is the RF excitation phase. This RF excitation is applied
to the segmented guard electrode, as shown in figure 2.10 (b).

This RF excitation couples the two radial eigenmotions. For a given
RF amplitude and excitation time, the ion’s motion will be fully converted
from one eigenmotion to an other if the excitation frequency corresponds to
the cyclotron frequency. Therefore, the cyclotron frequency can be found
through a determination of the excitation frequency for which the conversion
between the two eigenmotions is complete. In the following, we explain how
this is done using the TOF-ICR technique.

As mentioned, with the application of a quadrupole excitation, the mag-
netron and reduced cyclotron motions couple and their radii evolve as [Kon95]:
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r±(t) = {r±(0) cos(ωBt)∓ (
r±(0)i(ωRF − ωc) + r∓(0)k0e

±i∆φ

2ωB
) ·

sin(ωBt)}ei(ωRF−ωc)t/2, (2.31)

where

ωB =
1
2

√
(ωRF − ωc)2 + k2

0, (2.32)

k0 =
Vq
2a2

q

m

1
ω+ − ω−

, (2.33)

∆φ = φRF − φ+ − φ−. (2.34)

When the RF field is applied at the cyclotron frequency, i.e. ωRF = ωc,
equation (2.31) becomes:

r±(t) = {r±(0) cos(k0t/2)∓ r∓(0)e±i∆φ sin(k0t/2)}. (2.35)

If the initial condition is such that the ion is completely in the magnetron
mode with radius r−(0) = r0, then both radii evolve in time as:

r+(t)
r0

= sin(k0t/2), (2.36)

r−(t)
r0

= cos(k0t/2). (2.37)

Figure 2.12 shows that a full conversion of the initial magnetron motion
into reduced cyclotron occurs when the conversion factor η:

η = k0TRF /π (2.38)

is equal to η = η0 = 1, 3, 5, ... . At the beginning of the excitation (η = 0),
the ion motion is purely magnetron. This means that the energy of the ion
is dominantly potential energy. After a time TRF = η0π/k0, the situation
is inverted and the motion is purely reduced cyclotron motion, leading to
a full transfers of the potential energy into kinetic energy. Therefore, using
equation (2.33) in order to have a full conversion from an initial magnetron
motion into a reduced cyclotron motion, RF amplitude and the excitation
time must satisfy:

VRF ≈
2πBa2η0

TRF
. (2.39)
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Figure 2.12: Evolution of the reduced cyclotron motion of radius r+, mag-
netron motion of radius r− and radial kinetic energy as a function of the
conversion factor η = k0TRF /π.

If the applied RF frequency is detuned from the cyclotron frequency by
the amount

∆νRF =
ωRF − ωc

2π
, (2.40)

the kinetic energy of the ion in the radial plane at the end of the conversion
is given by

Er = E0

sin2
(
π
2

√
(2∆νRFTRF )2 + η2

)
(2∆νRFTRF /η)2 + 1

. (2.41)

Figure 2.13 shows that the ions which are resonantly excited (∆νRF =
0) have maximum kinetic energy after the conversion. This means that the
cyclotron frequency νc of the ion can be determined by taking the kinetic
energy as a measure of achieving resonant conditions, hence when the exci-
tation frequency νRF maximizes the kinetic energy of the ion. Note that the
full width half maximum (FWHM) of the time-of-flight spectra is given by
∆ν ·TRF ≈ 0.8 for η = 1 and ∆ν ·TRF ≈ 1.6 for η = 3. This means that the
resonance width for a full conversion is minimal when the conversion factor
η = 1. Therefore, for a given excitation time TRF , the smallest FWHM of a
kinetic energy spectra is given by

∆ν =
0.8
TRF

. (2.42)

A change in the ion kinetic energy during application of an RF-field
with ∆νRF is measured by ejecting the ions from the trap through a hole in
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Figure 2.13: Change in the kinetic energy in the radial plane as a function
of the detuning ∆νRF .

the end cap electrode (see figure 2.10 (a)). Then the change in time-of-flight
taken by the ion to reach a micro-channel plate (MCP) detector is measured.

After extraction from the trap, as the ion approaches the detector (see
top of figure 2.14) and travel in the fringe field produced by the magnet,
the change in direction of the magnetic field applies a torque on their initial
magnetic moment:

~µ(ωRF ) =
Er(ωRF )
B0

ẑ. (2.43)

The resulting work applied to the ions is expressed as

W = −µ(ωRF ) ·Bz(z). (2.44)

It results in a conversion of the kinetic energy gained from the radial motion
into an axial acceleration. Figure 2.14 is a simulation result which illustrates
the proportionality between the kinetic energy in the radial motion and the
axial magnetic field strength. From equation (2.43) and (2.44), one sees that
the ions which are excited at the frequency νRF = νc have the largest kinetic
energy gain and thus have the shortest time-of-flight. Hence it is possible to
find the cyclotron frequency by scanning through the excitation frequency
and finding which νRF leads to a minimal time-of-flight.
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Figure 2.14: Axial Bz magnetic field strength and kinetic energy related
to the radial motion Er as a function of the distance from the trap centre.
Shown on top is a schematic of the ion optics between the trap and MCP
detector.

In a typical cyclotron frequency measurement, the ions are excited at a
fixed frequency νRF for a given time and then released from the trap. The
time-of-flight of the ions from the trap to the MCP detector is recorded.
This procedure is repeated while varying νRF within the vicinity of the
expected νc and the TOF spectrum is obtained (figure 2.15). The cyclotron
frequency is determined by fitting the expected line shape to the spectrum.
The following analytical expression for the TOF [Kon95]:

T (νRF ) =
∫ z1

z0

{
M

2 · [E0 − q · V (z)− µ(νRF ) ·B(z)]

}1/2

dz (2.45)

is used to describe the line shape.

2.5.5 The mass determination

The mass m of the trapped ion is determined from the measurement of its
cyclotron frequency νc:

M =
1

2π
qB

νc
. (2.46)
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Figure 2.15: 6Li+ cyclotron frequency resonance taken with a 997 ms exci-
tation time. The solid line is a fit of the theoretical line shape [Kon95] to
the data.

The value of ion’s charge state q and the magnetic field B needs to be
determined. Since all the measurements presented in this thesis were done
using singly charged ions, we only consider the case where q equals to one
in units of the elementary charge.

Figure 2.15 shows that the magnetic field strength B during the mea-
surement of νc is determined by a linear interpolation between two measured
cyclotron frequency of a calibration ion species:

B =
Mcal

qcal
νc,inter (2.47)

where νc,inter is the interpolated cyclotron frequency, Mcal is the calibra-
tion ion’s mass and qcal equals one elementary charge. The choice of the
calibrant relies on two factors: its cyclotron frequency needs to be close to
the cyclotron frequency of the ion of interest and in order to not limit the
precision, the calibration mass, Mcal should be more precisely known than
the precision aimed for in the measurement.

A frequency ratio R is derived from each frequency (νc,inter, νc) pair:

R = νc,inter/νc. (2.48)

The mean frequency ratio R is calculated by taking the weighted mean of all

57



2.5. The mass measurement Penning trap

time

cy
cl

o
tr

o
n

 f
re

q
u

e
n

cy

νc,inter

(calib. 1)

(calib. 2)

νc

calibrant ion

ion of interest

Figure 2.16: Linear interpolation of the calibration cyclotron frequency at
the moment the cyclotron frequency of the ion of interest was measured.

R. The frequency ratio involves ion masses, while the quantity of interest is
the (neutral) atomic mass. Hence, one has to take into account the electron’s
mass and binding energy. The atomic mass of interest m is then determined
by:

m = R · (mcal −me +Be,cal) +me −Be, (2.49)

where Be,cal and Be are the first ionization energies of the calibrant and the
ion of interest respectively and me is the electron mass.

The resolving power R in Penning trap mass spectrometry is given by
[Bol01]:

R =
νc
δν

= 1.25 · νc · TRF , (2.50)

where we used equation (2.42) to replace δν. The statistical relative uncer-
tainty of a mass measurement is inverse proportional to the resolving power
and to the square root of the number of detected ions Nion [Bol01]:

δm

m
≈ 1

R

1√
Nion

=
1.6 · π ·m

q ·B · TRF ·
√
Nion

. (2.51)

This relation shows that the precision on the measured mass can be improved
in several ways. By increasing the excitation time TRF , with a magnet
having a higher magnetic field, or by increasing the charge state of the ion.
For stable ions, we can increase TRF to improve the precision. However, the
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half-life of the measured species limits the excitation time, which limits the
excitation time that can be used.

The precision on the mass measurement can be further improved by
using a magnet with higher field strength. However, only an increase in
the precision of a factor of two or three would be possible as higher field
magnets have not yet been developed with the required homogeneity and
stability. An other option is to increase the charge state q of the ion. This
allows a precision gain proportional to the charge state used. This method is
employed at the TITAN experiment as described in section 2.1.2. However,
it was not used in any of the measurements presented in this thesis as the
required level of precision was already reached using singly charged ions.
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Chapter 3

Systematic studies of the
TITAN Penning trap and
data analysis

A real Penning trap is not as ideal as it is presented in section 2.4 and
modification arise from a number of factors. For instance, the electrodes
forming the trap do not extend to infinity and are truncated. Also, holes in
the two end caps electrodes have to be made in order to inject and extract
the ions from the trap. Moreover, the ideal trap assumes perfect geometrical
alignment of all fields. In reality misalignment between each trap electrode
and distortion in the shape of the electrodes affects the trapping potential.
There are also misalignments of the trap principal axis with the magnetic
field axis, and deviation from homogeneity of the magnetic field in the trap-
ping region. Other effects due to the Coulomb interaction between ions,
time fluctuations of the magnetic field and relativistic effects have to be
taken into account.

This chapter discusses the effects of these factors on the accuracy of the
frequency measurements used for the mass determination. These limitations
in the accuracy are caused by the change (or shift) in cyclotron frequency due
to the several effects that were enumerated above. Some of these shifts can
be minimized through a so-called compensation of the Penning trap potential
and the compensation of TITAN’s Penning trap will be presented. At the
end of this chapter we present the mass measurement of stable 6Li. This
is a benchmark measurement regarding the level of precision and accuracy
that can be achieved with the TITAN Penning trap mass spectrometer.

3.1 Frequency ratio deviation for a real Penning
trap

The imperfection in the trapping potential, magnetic field and trap structure
as well as the Coulomb interaction between ions, the time fluctuations of
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the magnetic field, and relativistic effects all result in a different measured
cyclotron frequency than the true νc given by equation (2.46). These so-
called frequency shifts then modify the measured frequency ratio Rmeas.:

Rmeas. =
νc,1 + ∆νc,1
νc,2 + ∆νc,2

(3.1)

from the ideal frequency ratio

Rideal =
νc,1
νc,2

. (3.2)

The large value of the cyclotron frequency, in the MHz range, com-
pared to the frequency shifts ∆νc, in the Hz range, allows one to state that
∆νc/νc � 1. This consequently leads to a relative frequency ratio shift of

∆R
R

=
Rmeas. −Rideal

Rideal
=

∆νc,1
νc,1

− ∆νc,2
νc,2

. (3.3)

Equation (3.3) indicates two points: first, the error of relative frequency
ratio shift is in general smaller than the individual relative frequency shifts.
Secondly, by measuring the frequency ratio of two species of similar νc, one
can reduce ∆R/R by several order of magnitude. The following sections
investigates the various sources of frequency shifts and estimate their size in
detail.

3.2 Trapping potentials of a real Penning trap
and trap-related systematic error

The first step to determine the effects of the trapping potential imperfections
on the cyclotron frequency consists of deriving the potential of a realistic
Penning trap. This is done by starting from the most general potential and
identifying the parts of the potential that will affect the cyclotron frequency.

The most general expression for an electrical trapping potential is ob-
tained by solving the Laplace equation in spherical coordinates. The result-
ing potential is

V (ρ, θ, φ) =
∞∑
l=0

l∑
m=−l

Al,m · ρl · Y m
l (θ, φ) (3.4)

where (ρ, θ, φ) are the spherical coordinates and Y m
l (θ, φ) are spherical

harmonics. The first term of the series (3.4), which is l = 0, represents a
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constant offset of the trapping potential compared to the ground potential.
This term does not produce any electric field and therefore it does not modify
the ions equation of motion, leaving the cyclotron frequency unaffected.

The next term, l = 1, is proportional to ρ and represents a constant
electric field in the trap. This results in the addition of a constant term
to the solution of the equation of motion, which does not modify the ion
motion or shift the cyclotron frequency. Furthermore, Penning traps are
symmetric under inversion ~r → −~r (at the condition that the end cap and
ring electrode symmetry axis cross at the centre of the trap), hence the l =
1 term is relatively small compared to the quadratic term. Therefore, the
higher order of l = odd numbers are negligible and we only consider the
contributions of l = even numbers to the series of equation (3.4).

The inclusion of m 6= 0 terms in the quadratic trapping potential (l =
2) induces an extra quadrupolar field in the xy-plane:

V2(x, y, z) =
V0

2d2

{
z2 − 1

2
(
x2 + y2

)
− ε

2
(
x2 − y2

)}
. (3.5)

The size of the extra field is given by the asymmetry parameter ε. The
effect of ε on the measured cyclotron frequency and the factors causing this
asymmetry are discussed in detail in the section 3.2.2.1. For l > 2, we
assume m = 0 because |m| ≥ 1 represents a smaller perturbation of the
trapping potential, hence their contribution to equation (3.4) is negligible.

The l > 2 terms of equation (3.4) are caused by the holes in the end cap
electrodes and by the truncation of the Penning trap hyperboloid structure.
The octupole (l = 4) and dodecapole (l = 6) terms [Bol90] of equation (3.4)
are:

V4(r, z) = C4

(
V0

2d4

){
z4 − 3z2r2 +

3
8
r4

}
(3.6)

V6(r, z) = C6

(
V0

2d6

){
z6 − 15

2
z4r2 +

45
8
z2r4 − 5

16
r6

}
. (3.7)

Because of the 1/dl dependence of the potential, the contribution of the l >
8 terms to equation (3.4) are increasingly smaller.

In section 3.2.3, we show that the frequency shifts arising from the non-
harmonic terms in the trapping potential can produce relative frequency
ratio shifts in the order of ∆R/R ∼ 10−7, which is above the required level
of precision that the TITAN mass spectrometer aims at. However, these
shifts can be reduced by factors of over 100 by adjusting the potential of the
correction electrodes. The contribution caused by the holes in the end caps
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are corrected for by the addition of two correction tube electrodes (label (3)
in figure 2.10) before the two end caps. The distortion from the truncation
of the hyperbola forming the trap electrodes is minimized by adding two
sets of correction guard electrodes (label (4) in figure 2.10) between the
ring and end caps electrodes. The adjustment of the potential of these
correction electrode is called trap compensation and the TITAN Penning
trap compensation is discussed in detail in section 3.3.

3.2.1 Penning trap magnetic field inhomogeneities

The ideal Penning trap assumes that the magnetic field is constant through-
out the trapping region, i.e. B(x, y, z) = B0 = constant. For real traps,
however, magnetic field inhomogeneities are created by the finite size of the
solenoid and the magnetic field distortion due to the magnetic susceptibilities
of the trap material [Bol90]. For both cases, the lowest-order contribution
to the magnetic field inhomogeneities is

∆B = B0

{
1 + β2

(
z2 − r2/2

)}
(3.8)

where B0 is the unperturbed magnetic field and β2 is a material constant.
As an example, β2 is found in other systems to be -1.7 × 10−7 mm−2 for
ISOLTRAP [Bol90] and 1.3 × 10−10 mm−2 for LEBIT [Rin09b]. The fre-
quency shift from the field inhomogeneity (3.8) is:

∆ωc = β2ωc

{
z2 −

r2
+

2

(
1− ωc

ω+ − ω−

)
−
r2
−
2

(
1 +

ωc
ω+ − ω−

)}
. (3.9)

Typically ω+ � ω− and using ωc = ω+ + ω−, equation (3.9) is simplified as

∆ωc = β2ωc

{(
z2 − r2

+

)
− ω−
ωc

(
r2

+ + r2
−
)}

. (3.10)

Because ωc � ω−, the term in curly brackets is very weakly mass dependant.
This is because the magnetron frequency is very weakly mass-dependent. For
a V0 = 36 V trapping potential, the change in magnetron frequency with the
mass number (u) is 0.65 Hz/u. This corresponds to a relative change in the
magnetron frequency of 10−4/u resulting in a change in the ratio ω−/ωc in
the range of 10−10/u. This can be considered as nearly mass-independent.
The overall effect on the cyclotron frequency ratio is:(

∆R
R

)
mag.inhom.

' −β2

(
r2

+ + r2
−
) ν−
νc

(A−Acal.)
A

. (3.11)
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3.2. Trapping potentials of a real Penning trap and trap-related systematic error

Using typical values of
(
r2

+ + r2
−
)

= 1 mm2, ν− = 6100 Hz and assuming a
conservative β2 = -1.7 × 10−7 mm−2, we get a shift in the frequency ratio
of (∆R/R)mag.inhom. <1.8 × 10−11 ·∆A, where ∆A = A−Acal.. This is two
orders of magnitude below the standard precision obtained with the TITAN
Penning trap. Therefore, additional optimization of the magnetic field is
not required at this point.

3.2.2 Harmonic distortion and misalignment of the
magnetic field axis

The ideal Penning trap assumes a perfect alignment between the trap and
magnetic field axis (i.e. ~B = B0ẑ) as shown in figure 2.10. It also as-
sumes that the electrodes are perfectly aligned with respect to each other
and without surface imperfections. In reality, as Figure 3.1 (a) shows, the

v

V0

z

x

y

B

φ

θ

x

ya)a) b)

1 − ε

r0

1 + ε

r0

Figure 3.1: a) Schematic of the electrode structure alignment with the mag-
netic field axis. b) Top view of a elliptically distorted ring electrode that
leads to a non-zero asymmetry parameter ε.

magnetic field might have some misalignment with the trap axis which can
be expressed as

~B = B0 (sin θ cosφx̂+ sin θ sinφŷ + cos θẑ) . (3.12)

Also, the trap electrodes could have deformations as shown in figure 3.1
(b), as well as be misaligned with respect to each another that leads to a
non-zero asymmetry parameter ε. This results in a distorted potential given
by equation (3.5).
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3.2. Trapping potentials of a real Penning trap and trap-related systematic error

These two imperfections modify the equation of motion of the ion in the
Penning trap (2.11) according to:

ẍ− ω2
z

2
(1 + ε)x− ωc(cos θẏ − sin θ sinφż) = 0 (3.13)

ÿ − ω2
z

2
(1− ε)y + ωc(cos θẋ− sin θ cosφż) = 0 (3.14)

z̈ + ω2
zz − ωc sin θ(sinφẋ− cosφẏ) = 0. (3.15)

Assuming x(t) ∼ e−iωt, equations (3.13) to (3.15) become a system of lin-
ear equations. Applying linear algebra techniques it results in imperfect
trap eigenfrequencies (ωi) which depend on (ε, θ, φ) and a shifted cyclotron
frequency given by

∆ωc = ωc − ωc. (3.16)

A result obtained from solving equations (3.13) to (3.15) is the so-called
invariance theorem [Bro82]:

ω2
c = ω2

z + ω2
+ + ω2

−. (3.17)

This theorem states that the sum of the squared real trap eigenfrequen-
cies are independent of (θ, φ, ε) and are equal to the ideal trap cyclotron
frequency. Typically, ω+ � ωz � ω−, which changes (3.17) as:

ωc ' ω+

(
1 +

1
2
ω2
z

ω2
+

)
. (3.18)

For small angles and asymmetry parameter ε the real trap magnetron fre-
quency ω− [Bro82] is:

ω− '
1
2
ω2
z

ωc2

(
1 +

9
4
θ2 − 1

2
ε2
)
. (3.19)

Combining (3.18) and (3.19) and applying ωc = ω+ + ω− the cyclotron
frequency shift (3.17) becomes

∆ωc = ω−

(
9
4
θ2 − 1

2
ε2
)
. (3.20)

The corresponding shift in the frequency ratio is given by

(∆R/R)mis. =
(

9
4
θ2 − 1

2
ε2
)
·
(

∆A
Acal.

)
·
(

ν−
ν+,cal

)
. (3.21)
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3.2. Trapping potentials of a real Penning trap and trap-related systematic error

In order to estimate the size of the frequency shifts due to the mis-
alignment with the magnetic field and the harmonic distortion, we use the
magnetron frequency for TITAN’s Penning trap (ν− = 6100 Hz) and by ap-
proximating ν+ ' νc. This results in a shift of (∆R/R)mis. =

(
9
4θ

2 − 1
2ε

2
)
·

∆A ·1.1×10−4. In order to have a conservative estimate on the error, we use
the conservative values for θ = ε = 0.01 from [Bol90]. By doing so, we get
a shift in the range of (∆R/R)mis. = 10−8 when ions with different atomic
masses are used. Such a shift is greater than the precision level at which the
TITAN Penning trap aims. Therefore it is crucial to estimate and measure
θ and ε for the TITAN Penning trap and minimize its impact.

3.2.2.1 Harmonic distortion of the electrical potential in the
Penning trap

Here we estimate the size of the asymmetry parameter ε based on the ma-
chining tolerances of the electrodes and we measure its size by creating an
artificial harmonic distortion using the correction guard electrode.

To study the effect of the asymmetry parameter ε on the electrical po-
tential, we re-write the radial part of (3.5) as

Vharm.dist. =
V0

4d2
0

{
(1 + ε)x2 + (1− ε)y2

}
. (3.22)

Depending on the value for ε the equipotential lines may form three different
shapes. For ε = 0 the lines are circular. This is the case for an ideal trap.
For 0 < ε < 1 the radial equipotential lines are in an elliptical shape. For
ε > 1 the equipotentials are hyperbolical with a saddle point at the trap
centre. This last case leads to unstable solutions for the ion motion. As ε
is typically < 0.1 [Bol90], we are not considering this last case. Please refer
to [Kre08] for a detailed explanation.

A non-zero asymmetry parameter, ε, is caused by a number of effects.
We discuss them and show how they can be minimized. Patched oxidation
of the electrodes surfaces cause undesired stray electric fields [Tes97], which
modify the electric potential. Such effects are minimized by gold-plating the
trap electrode surfaces (see figure 3.2). In addition, quadrupole deformation
of the electric potential in the xy-plane is minimized by applying an RF-
field on the correction guard electrode to avoid splitting the ring electrode.
Thirdly, the misalignment of the ring electrode with respect to the trap
axis is minimized by using high-tolerance sapphire spheres (tolerance on the
sphericity of 2.5 µm) on which the trap electrodes sit and by applying tight
electrode machining tolerance (typical tolerance of 10 µm in the dimensions).
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Gold plated electrodes

Sliced guard elec.

Sapphire balls

a) MPET

b) MPET support structure

Two support rings to hold the

MPET in place by compression

support structure

1 dollar 

coin

Figure 3.2: a) Left: one-piece ring electrode. Right: gold-plated Penning
trap electrodes including the sapphire spheres (shown on top of the sliced
guard electrode). Shown is a Canadian 1 dollar coin for scaling. b) The TI-
TAN Penning trap placed in the support structure frame. The trap structure
is held in place by compression using two support rings.
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Figure 3.3: Exaggerated schematic of the tilted ring electrode that may be
caused by uneven spacing between the ring and the end cap electrodes.

The Penning trap electrodes are isolated from one another using sapphire
spheres placed in a groove on the surface of the electrode. The whole trap
structure is then held in place by compression between two copper rings as
shown in figure 3.2. Therefore, a non-zero tilting angle α (see figure 3.3)
may be caused by uneven groove size where the sapphire balls sit on the
opposite side of the ring electrode. Based on the design drawings, and
standard machining tolerances, the maximum value for α is 0.0016 radians.
Applying trigonometry and the equation for the ring electrode hyperbola,
the asymmetry parameter ε due to tilted ring electrode is

εtilt = sin2 α ·
(
1 + (r0/z0)2

)
= 1.1× 10−5. (3.23)

Lastly, we consider the case of an elliptical ring electrode (see figure 3.1),
which is described by:

x2

(r0/
√

1 + ε)2
+

y2

(r0/
√

1− ε)2
= 1. (3.24)

Assuming the ring electrode radius from the trap centre r0 = 15 mm, and
the machining tolerance δ = 0.01 mm, we get

εmax =
4δ
r0

= 2.6× 10−3, (3.25)
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3.2. Trapping potentials of a real Penning trap and trap-related systematic error

where we used twice the machining tolerance. This result is about four times
smaller than the estimate in [Bol90], which is ε = 0.01.

In the following, the value of ε for the TITAN Penning trap has been
determined experimentally. According to [Gab09], the measured cyclotron
frequency νc is shifted from the ideal trap cyclotron frequency νc by

νc = νc + ν− ·
(

9
4
θ2 − 1

2
ε2
)
. (3.26)

This suggests that the measured cyclotron frequency shifts quadratically
with ε. Therefore, by varying the amplitude Vquad of a constant quadrupolar
potential

V =
Vquad
4a2

(
x2 − y2

)
(3.27)

applied on segmented guard electrodes one can artificially change the value
of ε. We then obtain a quadratic change in νc,

νc = νc,max +A · (Vquad − Vquad,max)2 (3.28)

where A, νc,max and Vquad,max are fitting parameters. Figure 3.4 shows
the observed variation in νc with Vquad together with a fit of (3.28). The

Parameter Value
νc,max 1 458 879.50(1) Hz
A 0.0425(7) Hz V−2

Vquad,max -0.08(5) V

Table 3.1: Fitting parameters from (3.28) describing the quadratic change
in νc with the amplitude Vquad.

observed parameters are shown in table 3.1. They show that a small voltage
of -0.08(5) V, for a trapping potential of V0 = 36 V would be needed to fully
cancel the asymmetry parameter ε0 of the TITAN Penning trap. Using
(3.26) and (3.28), ε0 is calculated to be

ε0 =

√
2A
ν−
· Vquad,max = 3(2)× 10−4. (3.29)

Taking the upper error on ε0 gives a contribution of (∆R/R)ε = 1.3×10−11 ·
∆A.
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Figure 3.4: Variation of the measured cyclotron frequency νc with the am-
plitude Vquad of a constant quadrupolar field applied on the correction guard
electrode.

3.2.2.2 Misalignment of the magnetic field axis with the
Penning trap electrode geometry

The misalignment between the Penning trap electrode axis and the axial
direction of the magnetic field modifies the cyclotron frequency compared
to the case where the field would be perfectly aligned. This change in fre-
quency leads to a shift in the frequency ratio as expressed by equation (3.21)
and explained in section 3.2.2. As this effect could limit the accuracy on
the frequency ratio determination, it needs to be minimized. The angle of
misalignment θ can be minimized by a precise alignment of the Penning trap
structure with the magnetic field using an electron beam and also by requir-
ing tight machining tolerances for the trap electrodes. In this section we
discuss the error from both the alignment of the chamber with the magnetic
field and the alignment of the trap with respect to the vacuum chamber.
But first, we give a brief description of the vacuum chamber alignment pro-
cedure.

The trap vacuum chamber has been carefully aligned using an electron
beam. For the alignment we used an electron source positioned at the trap
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Figure 3.5: Schematic of the Penning trap vacuum chamber alignment using
an electron source.

centre, a phosphor screen placed at the end of the vacuum chamber and
three co-centric targets as shown in figure 3.5. The targets are made of an
aperture with two metal stripes forming a co-centric “x” to the hole.

In the magnetic field, the electrons are guided along the field lines.
Therefore, the chamber is pre-aligned once it is put in a position that allows
the electron beam to pass through the three apertures. A fine alignment is
then done by having the shadows of the three “x”s aligned on the phosphor
screen. The alignment is done by moving the chamber in the x-y direction
using an external mechanical alignment mechanism.

The chamber has been finely adjusted until a displacement with an upper
error of 0.04 mm between the two most separated targets has been reached.
Considering that the distance between these two aperture is 590.5(1) mm,
this gives an upper limit on the misalignment of the vacuum chamber with
respect to the magnetic field of θchamber < 7.3× 10−5 rad.

An additional source of error comes from a misalignment of the trap
with respect to the support frame. As described in the previous section, the
Penning trap electrodes are isolated from each an other and from the support
frame using sapphire sphere that are placed on a grove on the electrode
surface. The whole structure is then held in place by compression (see
figure 3.2) and this support structure is connected to the vacuum tube. The
maximal misalignment of the trap with respect to the support structure
happens when the support-giving sapphire balls are too wide, while the
holes in which they are located are made too small. This combination with
extreme opposites on either side of the electrode structure, as shown in
figure 3.6, would lead to a maximal disturbance.

We consider sphericity tolerances on the sapphire balls of 2.5 µm and
tolerances of 10 µm for the grove in which the balls are placed. In the worse
case both the tube electrode with respect to the support and the end cap
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Figure 3.6: Unequal sapphire sphere and holding hole size leading to a trap
axis misalignment with the magnetic field axis.

with respect to the tube electrode are misaligned. Under these conditions,
the misalignment is δ = 90 µm, where, to be conservative, we used double
the machining tolerances. Considering that the support sphere are placed
along a circle of radius R = 21.6 mm, the largest possible tilt is

θsupp. = δ/R = 4× 10−3. (3.30)

Since the error coming from the machining tolerances dominates (θsupp. �
θchamber) the error from the chamber alignment, the upper value on theta
is θmax = 4 × 10−3. The error on the frequency ratio due to both the
asymmetry parameter ε and the angle θ is given by equation (3.21). The
maximal error on the frequency ratio is obtained when ε = 0 and θ = 4 ×
10−3 and is equal to (∆R/R)mis. = 4.2 × 10−9 · ∆A. This value is for a
trapping potential of V0 = 35 V. When a smaller trapping potential is used,
the magnetron frequency

ν− ≈
V0

4πd2
0B

(3.31)

is reduced. As (∆R/R)mis. ∝ ν−, this leads to a smaller uncertainty due
to the misalignment and harmonic distortion. For the 6,8He mass measure-
ments, the trapping potential was V0 = 3.6 V, which leads to (∆R/R)mis. =
0.4× 10−9 ·∆A.
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3.2.3 Non-harmonic imperfections of the trapping potential

The non-harmonic imperfections of the trapping potential are caused by
the finite size of the trap and the holes in the end-cap electrodes. These
imperfections cause shifts in the trap eigenfrequencies (νz, ν−, ν+) and con-
sequently in the cyclotron frequency (νc = ν+ + ν−). The procedure to
calculate these frequency shifts is given in detail in [Bro86] and [Bol90]. In
this section we only provide the results of these calculations. The shifts in
the radial eigenfrequency for the octupole (C4) and dodecapole (C6) terms
are

δν± ≈ ±
3
4
C4

d2
ν−
{

(r2
± + 2r2

∓)− 2z2
}

(3.32)

δν± ≈ ±
15
16
C6

d4
ν−
{
−3z4 + 6z2(r2

± + 2r2
∓)− (r4

± + 3r4
∓ + 6r2

+r
2
−)
}
,(3.33)

where the frequency shifts are almost mass independent. This is because
the magnetron frequency is very weakly mass-dependent. Substituting νc =
ν+ + ν−, it gives

δνc ≈
3
4

(r2
− − r2

+)
d2

ν−{C4 +
5
2
C6

d2

(
3z2 − r2

+ − r2
−
)

+

+
35
8
C8

d4

(
r4

+ + 3r2
+r

2
− + r4

− − 8z2r2
+ + 6z4

)
}. (3.34)

One notes that the octupole correction (C4) does not depend on the am-
plitude of the axial oscillations z of the ions in the trap. Equation (3.34)

Multipole z = 0 z = 2 z = 4 z = 8
l = 4 36 36 36 36
l = 6 0.72 -8 -34 138
l = 8 0.01 1 15 248

Table 3.2: Contribution of the first three multipole to the electrical potential
for various axial oscillations amplitude z (in mm). For comparison purpose,
we assume C4 = C6 = C8 = 1. Units are in Hz.

shows that if the size of each multipole goes down by a factor 1/d2, this
is compensated by the large factor (e.g. 5/2, 35/8, etc.). Table 3.2 shows
that higher order multiples dominate when the axial oscillations amplitudes
are large. Therefore, it is important to ensure that the ions axial oscillation
amplitudes are minimal in order to minimize frequency shifts.
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3.3. Compensation of the Penning trap electrical potential

Frequency shifts from the non-harmonic terms in the trap potential are
almost mass independent, hence the frequency ratio relative shift from equa-
tion (3.3) is (

∆R
R

)
pot.inhom.

= ∆ν ·
(

1
ν1
− 1
ν2

)
=

∆ν
ν1A1

∆A. (3.35)

Applying the conservative values C4 = 0.23 and C6 = -0.26 from the lit-
erature [Bol90], we get ∆ν

ν1A1
= 1.8 × 10−7. This is at least a factor 100

times larger than any other sources of frequency shifts we have discussed so
far. Therefore, it is necessary to minimize the CN>2 coefficients to perform
accurate mass measurement at the 10−9 range.

3.3 Compensation of the Penning trap electrical
potential

In order to achieve accurate mass measurement at the 10−9 range, one needs
to study and minimize the sources of systematic errors. From the previous
sections, we saw that the largest possible source of error on the measured
frequency ratio would come from the non-harmonic terms in the trapping
potential.

Therefore the non-harmonic terms in the trapping potential need to be
minimized as they could potentially induce large shift in the cyclotron fre-
quency. This is done using the correction guard and tube electrodes shown
in figure 2.10. The potentials Vguard and Vtube that provide the optimal
compensation of the non-harmonic terms in the trapping potential can be
obtained using several methods. TITAN’s Penning trap used two different
methods: the compensation using a dipole excitation and the compensation
using a quadrupole excitation.

The first method, outlined in [Bec09] and described in section 3.3.2, con-
sists of finding the potentials Vguard and Vtube that minimize the change in
the reduced cyclotron frequency ν+ with different axial oscillations ampli-
tude z of the ion in the trap. The reason to chose the reduced cyclotron
frequency is due to its larger sensitivity to the trapping potential V0 than
the cyclotron frequency νc as shown by:

ν+ ≈ νc −
V0

4πBd2
. (3.36)

The second method is a novel approach described in section 3.3.3 and
consists of finding the potential Vguard and Vtube that minimizes changes
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3.3. Compensation of the Penning trap electrical potential

in the cyclotron frequency νc with the conversion factor η. The second
compensation method is used to confirm and refine the settings found by
the first method.

3.3.1 Calculated correction tube and guard potentials

Before starting to compensate the non-harmonic terms using the methods
outlined in sections 2.2.8.2 and 2.2.8.3, one needs to estimate the potentials
Vguard and Vtube that would minimize the non-harmonic coefficients CN>2.
This is done by minimizing the difference between the potential produced
by the trap electrodes and a quadratic target potential.

The potential produced by the individual electrodes along the axis was
obtained using the software SIMION [Dah00]. Figure 3.7 shows the po-
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Figure 3.7: Normalized potentials produced by the different Penning trap
electrode along the trap axis. The distance z is measured from the trap
centre.

tentials of the four electrodes: the correction tube, the correction guard,
the end caps and the ring electrode produced along the z-axis when 1 V is
applied on these electrode individually.

The axial potential is given by a linear combination of these individual
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potentials:

Vth(z) = kcapVcap(z) +kringVring(z) +kguardVguard(z) +ktubeVtube(z) (3.37)

where ki are scaling coefficients that needs to be determined. These coeffi-
cients minimize

χ2 =
∑
{Vtarget(z)− Vth(z)}2 (3.38)

where the target potential Vtarget is purely harmonic:

Vtarget(z) =
z2

z2
0

. (3.39)

Before minimizing equation (3.38), one needs to find initial scaling co-
efficient values. The values are chosen using the ideal quadratic potential
given by equation (3.1). First, the end cap scaling factor was fixed to kcap
= 1. This removes one floating parameter in the χ2 minimization. Then,
using equation (3.1) and kcap = 1, the starting value for the ring electrode
scaling factor is found to be:

kring = − r2
0

2z2
0

= −0.81. (3.40)

The chosen starting value for the correction guard and tube electrodes scal-
ing factor are respectively kguard = 0 and ktube = 1, which represents no
correction.

Depending on the range along z over which the χ2 minimization is per-
formed, different scaling coefficients are found. A minimization range near
the end cap holes (situated 11.785 mm from the trap centre) would result
in a poorer compensation near the trap centre due to the large deviation
from a quadratic form near the holes. However, if the minimization region
is too close to the trap centre the scaling coefficients obtained would cre-
ate a potential that rapidly diverges from the quadratic form outside the
minimization region. Hence, we performed the minimization over the four
scaling ranges shown in figure 3.8 and each time we computed the residuals

Vres. = Vharm. − Vth (3.41)

where Vharm. is a quadratic fit of the optimal potential Vth. At the 10 mm
minimization range, the residuals diverge less with large z but fluctuate more
when compared to the smaller minimization ranges. When the minimization
range is less than 8 mm, the residuals start to diverge rapidly outside the
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Figure 3.8: Residuals as a function of the minimization range.

kring ktube kguard C4 C6

-0.786 1.640 0.078 -7×10−6 5×10−5

Table 3.3: Calculated normalized potential ki needed to be applied on
the ring, correction tube and guard electrodes in order to have an optimal
compensation over a range of 8 mm from the trap centre.

minimization range while no net-improvement in the residuals fluctuations
near the trap centre are observed. Therefore, we chose the scaling coefficient
ki obtained using a minimization range of 8 mm. The results are shown in
table 3.3. The axial potential Vth has been fitted using

V (z) =
V0

2

(
C0 +

C2

d2
z2 +

C4

d4
z4 +

C6

d6
z6

)
, (3.42)

in order to determine the size of the C4 and C6 coefficients obtained using the
ki shown in table 3.3. The obtained coefficients, presented in table 3.3, are
a factor 10−4 smaller than the values from the literature [Bol90] presented
earlier. This results in a similar decrease in the cyclotron frequency shift
due to the non-harmonic terms in the trapping potential and this shows the
importance of a proper compensation of the trap potential.
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Then, we investigated how the C4 and C6 coefficients change with ktube
and kguard. To do so, we varied the scaling coefficients over the ranges -1.0
V < kguard < 1.0 V and 0.8 V < ktube < 2.0 V and calculated the C4 and
C6 coefficients using equation (3.42). Figure 3.9 shows that the C4 and C6
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Figure 3.9: Linear variation in the strength of the C4 and C6 coefficients
with ktube and kguard. Note that the planes crosses at ktube = 1.64V and
kguard = 0.08V.

coefficients vary linearly with both ktube and kguard. This gives rise to planes
of equations

C4 = 0.004− 0.0003ktube − 0.051kguard (3.43)
C6 = −0.083 + 0.050ktube + 0.017kguard (3.44)

in the ktube kguard-space. Solving (3.43) and (3.44) for C4 = C6 = 0, gives
consistent correction tube and guard voltages as presented in table 3.3.

As discussed in [Bro86], the octupolar term C4 can be corrected by plac-
ing a correction guard electrode between the ring and end caps electrodes.
This is confirmed by the stronger dependance of C4 with kguard as shown in
(3.43). Figure 3.9 also shows that the dodecapole term C6 is mainly affected
by ktube, confirming what was seen in the literature [Bol90].
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To finish this section, we discuss the effect of the correction tube and
guard voltage on the reduced cyclotron frequency. In section 3.3.2, the
non-harmonic components of the trapping potential are compensated by
measuring the reduced cyclotron frequency difference

∆ν+ = ν+(z = z0)− ν+(z = 0) (3.45)

where the axial amplitude z is varied by changing the capture timing in
the trap. z = 0 correspond to the trap centre and z = z0 to a large axial
amplitude. The compensation is performed by varying ktube and kguard until
no changes in the reduced cyclotron frequency (∆ν+ = 0) are seen. The ktube
and kguard found corresponds to the optimal compensation.

Then using the linear change of the C4 and C6 coefficients with ktube and
kguard:

Ci = aiktube + bikguard + ci (3.46)

allows one to write the reduced cyclotron frequency difference as:

∆ν+ =
∞∑
i=2

a2ih2iktube +
∞∑
i=2

b2ih2ikguard +
∞∑
i=2

c2ih2i, (3.47)

where h2i are functions of the axial and radial position of the ions in the
trap, e.g. for h4 and h6 we have

h4 ≈ −
3
2
ν−
d2
z2 (3.48)

h6 ≈ −
45
16
ν−z

2

d4

{
z2 − 2(r2

+ + 2r2
−))
}
. (3.49)

Both coefficients are unaffected by a variation of C4 and C6. The optimal
compensation condition ∆ν+ = 0 leads to several optimal values for ktube
and kguard, all lying along a straight line of equation

ktube = −
∑∞

i=2 b2ih2i∑∞
i=2 a2ih2i

kguard −
∑∞

i=2 c2ih2i∑∞
i=2 a2ih2i

. (3.50)

Since there can be only one sets of ktube and kguard that leads to a minimal
value of the C4 and C6 coefficients (see figure 3.9), and therefore to and op-
timal compensation, one needs a second compensation approach that selects
the correct setting along this line. This is the reason for carrying out two
different methods of compensating the trap.
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3.3.2 Penning trap compensation using a dipole excitation

The traditional procedure to compensate the electrical potential of a Penning
trap consists of measuring the reduced cyclotron frequency ν+ of the ion in
the trap for two extreme axial oscillations amplitude z: one with minimal
oscillation and the other with large oscillations. The optimal compensation
is the one that minimizes the change in the reduced cyclotron frequency
with the axial oscillation amplitude.

+

+

V

V b)V

V

z z

z z

c) d)

+

+

+

ion position when the trap is open

a) 

axial oscillations

∆t      < 0cap

∆t      = 0cap

Figure 3.10: Axial oscillations of the ion in the trap as function of the
closing time of the trap. a) The ion did not reach the trap centre when it
was closed b) results in large axial oscillations c) the ion stopped in the trap
centre when it was closed d) results in minimal oscillations.

The size of the oscillations is controlled by the closing time of the trap
when the ions are injected as shown in figure 3.10. Assuming that the ions
have the correct energy, they will stop once they reach the trap centre and if
at this point the trap is closed, the ions should have minimal axial oscillation
amplitude (see figure 3.10 (c) and (d)). However, if the trap is closed earlier
or later, it results in larger axial oscillation amplitudes (see figure 3.10 (a)
and (b)).

From equation (3.32), the reduced cyclotron frequency changes with the
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3.3. Compensation of the Penning trap electrical potential

axial oscillation amplitude quadratically. However, the position of the ion
in the trap at the closing time depends on time quadratically (as they are
decelerating towards the trap centre). Therefore, the change in reduced
cyclotron frequency with the closing time tcap of the trap has a quatric form:
ν+ ∝ ct4cap +dt3cap + ... and the location of the trap centre z = 0 corresponds
to where the frequency is either maximal or minimal. Figure 3.11 shows that
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Figure 3.11: Left axis: reduced cyclotron frequency as a function of the
capture timing in the Penning trap. The curve is a quatric fit and is centred
where the TOF error is minimal (circled). This corresponds to the location
of the trap centre. Right axis: time-of-flight distribution width, which is
minimal at the trap centre. The circle and square indicates the two cap-
ture timings that are compared when optimizing the correction electrodes
potential.

for ktube = 1.60, kguard = -0.05, the values of the different Ci coefficients is
such that the reduced cyclotron frequency is maximal at the trap centre
(indicated by the circle). This trap centre capture timing is confirmed by
the width of the time-of-flight distribution being minimal at this point (see
Appendix B.2 for more details).

By changing either the correction guard or tube potential, one changes
the values of the Ci coefficients as expressed in equation (3.46). This changes
the amplitude and direction of the concavity of the equation ν+ = az2 + b,
as shown by figure 3.12.
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Figure 3.12: Variation in the reduced cyclotron frequency with the capture
timing in the Penning trap for different correction tube potential ktube. Note
that close to ktube = 1.40, the variation in ν+ seems to be minimal. For these
scans, kguard = -0.05.

Thus, the Ci>2 coefficients are minimized by changing the potential on
the correction electrodes and taking the difference between the measured
ν+ at the trap centre (circled in figure 3.11) and the ν+ at a location away
from the centre (squared in figure 3.11) ∆ν+ = ν+(tcap = 1.1µs)−ν+(tcap =
1.6µs).

Figure 3.13 shows the linear behaviour in the reduced cyclotron fre-
quency difference ∆ν+ with the correction tube voltage for kguard = -0.05.
A linear regression of the data shows that ∆ν+ crosses zero for ktube =
1.464(4). As discussed in section 3.3.1, this would correspond to one of the
possible optimal compensation. Therefore, we repeated the procedure for
different correction guard potentials kguard. Figure 3.14 shows that all the
optimal kguard and ktube values lie along a straight lines as expected from
equation (3.50). In order to select the setting that optimizes the compensa-
tion, we need a second approach of compensating the trap.
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Figure 3.13: Change in the reduced cyclotron frequency difference ∆ν+ with
the correction tube potential ktube for a correction guard potential of kguard
= -0.05. Note the linear change in ∆ν+ with tcap. The linear fit crosses ∆ν+

= 0 for ktube = 1.464(4).

3.3.3 Penning trap compensation using a quadrupole
excitation

This is a novel approach to compensate the Penning trap electrical potential.
It consists of measuring the cyclotron frequency of the ion for two different
conversion factor η (see section 2.4.4), which defines the sizes of the mag-
netron and reduced cyclotron radii at the end of the excitation phase. Hence
from equation (3.34), their cyclotron frequency will be different. The non-
harmonic terms are minimized by finding the potential kguard and ktube that
minimizes the change in the cyclotron frequency with η.

Since both octupole and dodecapole terms depend on the difference be-
tween the reduced cyclotron and the magnetron eigenmotion amplitudes
r2

+ − r2
−, one can optimize the trapping potential by looking at differences

in νc for different r+ and r− amplitudes. The relative size of the radial am-
plitudes r± is changed by using different degree of conversion of the initial
magnetron motion into reduced cyclotron motion. This is done through a
variation of the RF amplitude VRF .
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Figure 3.14: Optimal kguard and ktube founded using a minimization of ∆ν+

and ∆νc. The intersection of the solid and dashed lines correspond to the
optimal combination of kguard and ktube.

In order to have a better understanding of the change of the cyclotron
frequency with η, we study the behaviour of the radial eingenmotion ampli-
tudes r± with the conversion factor η. For an ideal Penning trap with Ci>2

= 0, when the ions are excited at the cyclotron frequency, the amplitude of
their radial eigenmotions are given by

r+(t) = −r0k
+
0

2ωB
sinωBte−δt/2 (3.51)

r−(t) = r0

{
cosωBt+

γωc
2ωB

sinωBt
}
e−δt/2 (3.52)

where we assume that the initial radii r+(0) = 0 and r−(0) = r0. Without
any damping (δ = 0), the radius of the two motions is the same at half
conversion (η = 0.5). For non-zero damping (δ 6= 0), this is not the case, as
the magnetron radius is reduced with time. This leads to the radii of the
two motions being equal at a smaller conversion factor (η < 0.5).

In the case where Ci>2 6= 0, it is no longer possible to use equation (3.51)
and (3.52), as the non-quadratic terms modify the equation of motion.
Therefore, in order to study how νc changes with VRF , we numerically solved
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the equation of motion with an added C4 term

ẍ =
ω2
z

2
x

{
1 +

C4

d2

(
6z2 − 3

2
(x2 + y2)

)}
− ωcẏ + k0 cos (ωRF t)y(3.53)

ÿ =
ω2
z

2
y

{
1 +

C4

d2

(
6z2 − 3

2
(x2 + y2)

)}
+ ωcẋ+ k0 cos (ωRF t)x(3.54)

z̈ = −ω2
zz

{
1 +

C4

d2

(
2z2 − 3(x2 + y2)

)}
. (3.55)

The addition of the C4 term the equation of motions for the x and y
radial motions couples with the axial z motion. But by numerically solving
this system for small axial amplitudes in z, one finds that the radial and axial
motions only weakly affect each another. Therefore, in order to minimize
computing time, only the simplified case were z = 0 is considered.
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Figure 3.15: Radial energy gain Er as a function of the detuning ∆νRFTRF
for conversion factor η = 0.5 and 1.5 for C4TRF = 0.01. The energy gain
was normalized to the radial energy obtained from C4 = 0.

Upon solving these equations, one receives the radial energy

Er(∆νRF ) =
1
2
m
(
ẋ(∆νRF )2 + ẏ(∆νRF )2

)
(3.56)
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Figure 3.16: Left: Shift in the cyclotron frequency as a function of the
conversion factor η for C4TRF = 0.01. Note that there is no shift for η =
1.15. Right: Change in the frequency shift ∆νc as function of the octupole
coefficient C4 with η = 0.5, 1.5.

profiles as a function of the frequency detuning ∆νRF shown in figure 3.15.
Notice that with a C4 6= 0, the radial energy profile is no longer symmetric.
The deformation is more pronounced for over-converted resonances (η >
1), as their line width is smaller. For the under-converted case (η < 1),
the centre frequency gets more shifted. This is due to the fact that the
ion magnetron motion is not fully converted into reduced cyclotron motion.
Hence the ion then spent more time in regions where the Ci>2 components
are larger, leading to a larger shift in the centroid frequency.

The left panel of figure 3.16 shows that the cyclotron frequency νc shifts
strongly for η < 1, and once full conversion is reached, it changes more
slowly. Therefore, as shown by the right panel of figure 3.16, by investigat-
ing the difference in cyclotron frequency between an under-converted (η =
0.5) and over-converted (η = 1.5) time-of-flight resonance spectra, one finds
where Ci>2 = 0. The linear behaviour of C4 with ∆νc shown in figure 3.16
demonstrates that the r2

+ − r2
− term in equation (3.34) is independent of

C4. The η = 1.5 case however, does not present a linear behaviour and the
conclusion is that for this case, the term r2

+ − r2
− is dependant on the C4

parameter.
For a given correction guard potential kguard, the optimal ktube is the

one that minimizes ∆νc = νc(η = 0.5) − νc(η = 1.5) and that also leads
to the most symmetric over-converted time-of-flight resonance spectra. We
will now present the ktube scan performed using kguard = 0.06. For this scan,
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there were three tube voltages that gave symmetric time-of-flight resonance
spectra. The cyclotron frequency for these ktube was determined and are

ktube νc (Hz)
1.52 9 450 812.021(25)
1.55 9 450 812.040(26)
1.58 9 450 812.053(27)
mean 9 450 812.038(15)

Table 3.4: Cyclotron frequency for correction tube potential ktube that gave
symmetric over-converted time-of-flight resonance spectra. Also given is the
weighted mean of the frequencies. Statistical error is given in brackets.

summarized in table 3.4. These three cyclotron frequencies agree within
uncertainty and their weighted mean was taken as the cyclotron frequency
for which the Ci>2 are minimized. Then, the difference between the under-
converted cyclotron frequency and the over-converted cyclotron frequency
of table 3.4 was calculated for different correction tube voltage as shown in
figure 3.17. A linear regression of ∆νc leads to and optimal correction tube
voltage of ktube = 1.53(1).

Method slope y-intercept (V)
∆ν+ 1.07(3) 1.520(2)
∆νc 0.07(14) 1.541(9)

Table 3.5: Slope and y-intercept of the linear fits shown in figure 3.14.

The same procedure was repeated for correction guard voltages of kguard
= 0.08 and -0.05. The three different optimal kguard and ktube found using
this method, together with a linear regression, are presented in figure 3.14.
The optimal compensation of the non-harmonic terms in the trapping po-
tential was taken as the intersect of the two straight lines. The slope and
y-intercept values of these two linear regressions is given in table 3.5. These
two lines intersect for ktube = 1.54(1) and kguard = 0.02(1). The validity
of this result was verified by looking for potential changes in the cyclotron
frequency with the conversion factor η. Figure 3.18 shows that the changes
in the cyclotron frequency is minimal for the optimal ktube = 1.54(1) and
kguard = 0.02(1) compensation. The largest change in frequency with the
conversion factor observed is 80(50) mHz. For comparison purposes, three
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Figure 3.17: Change in the fitted cyclotron frequency ∆νc with a the voltage
applied on the correction tube electrode ktube for an RF amplitude that yield
a conversion factor η = 0.54.

other settings are shown. When ktube is very different from the optimal
value, it induces a strong shift in the cyclotron frequency for low (η < 1)
conversion factor, while for (η > 1), the frequency presents minimal changes.
This is the same behaviour as discussed previously in figure 3.16.

Figure 3.18 also shows that the cyclotron frequency changes with the
conversion factor η for the setting ktube = 1.46 and kguard = -0.05. This
setting was previously found as being optimal using the minimization of ∆ν+

method. However, the observed change in frequency is 260(80) mHz, which
is three times larger than ktube = 1.54(1) and kguard = 0.02(1) compensation.
Therefore, this confirm the importance of compensating the non-harmonic
terms of the potential by using two different observables.

3.3.4 Effect of the incomplete compensation of the trapping
potential of the TITAN Penning trap on the
measured frequency ratio

After the compensation is performed, the magnitude of the systematic error
due to the incomplete compensation of the non-harmonic terms in the trap-
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Figure 3.18: Fitted cyclotron frequency as a function of the conversion factor
η for different correction tube (ktube) and guard (kguard) potentials.

ping potential, ∆ν/(νA) in equation (3.35), needs to be evaluated. This is
done by measuring the frequency ratio of ions with two different mass num-
ber A. The frequency ratio is used to calculate the atomic mass of one of the
two species using equation (2.49). The mass obtained is compared to the
value of the AME03 [Aud03] and the difference in mass ∆m = m(TITAN)
- m(AME03) is used to compute the systematic error due to the incomplete
compensation of the trap:

∆ν
νA

=
∆m
m∆A

(3.57)

where ∆A = Acal−A is the difference in mass number between the calibra-
tion and the measured species.

The systematic error due to the incomplete compensation of the trap
has been calculated from a mass measurement of 23Na using H3O (A = 19)
as calibration and similarly for 39K using 23Na as calibration. The resulting
23Na and 39K masses difference with the AME03 are shown in table 3.6.
Both measurement show a smaller value of the mass when a calibrant less
massive than the ion of interest is used. The total shift in frequency ratio due
to the incomplete compensation of the trap was then taken as the weighted
mean of the ∆ν/(νA) for ∆A = 4 and 16. The resulting ∆ν/(νA) = -0.5(5)
ppb/u, is below the aimed-for uncertainty at TITAN.
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Specie ∆A ∆m (eV) ∆ν/(νA) (ppb/u) N
23Na 4 -71(77) -0.8(9) 12
39K 16 -243(263) -0.4(6) 13

Total -0.5(5) 25

Table 3.6: Difference in the mass excess of 23Na and 39K as measured
with the TITAN Penning trap and from the AME03. 23Na used H3O as
calibration and 39K used 23Na as calibration. From these measurements the
systematic error due to the incomplete compensation ∆ν/(νA) is derived.

3.4 TITAN Penning trap trap-independent
systematic errors

In this section, we present trap-independent systematic errors. These are
systematic effects that are not caused by the trap geometry, the alignment
of the trap or the magnetic field inhomogeneties. These systematic effects
includes magnetic field fluctuations over time, ion-ion interaction and rela-
tivistic effects.

3.4.1 Effects of nonlinear magnetic field fluctuations

In the TOF-ICR technique, the value of the magnetic field during the mea-
surement of the cyclotron frequency of the ion of interest is calculated using
equation (2.47) where the calibration cyclotron frequency is obtained from
a linear interpolation between two calibration measurements as shown in
figure 2.15. This procedure assumes that the magnetic field change between
the two calibrations is linear. This is valid for a “short” time span between
calibrations. However, variation of the magnetic field due to temperature
and pressure fluctuations are present [Kel03]. Such variations are nonlinear
and result in an error in the determination of the calibration cyclotron fre-
quency by linear interpolation. Therefore, the length of this “short” time
span depends on the aimed precision and the size of the magnetic field fluc-
tuations. In order to estimate the error due to the linear interpolation of the
magnetic field, a series of 7Li frequency measurement separated by 6 min-
utes, were performed over 16 hours. The resulting change in the frequency
are shown in the top graph of figure 3.19. Then, the 7Li cyclotron frequen-
cies were interpolated between calibrations. After, the difference between
these interpolations and the actual frequency measurement are calculated.
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Figure 3.19: Upper plot shows the variation in the cyclotron frequency of
7Li over a period of 16 hours. The lower plot gives the standard deviation
of differences between measured and interpolated values for increasing time
interval between calibration. The linear regression gives the systematic error
due to the linear frequency interpolation.

The standard deviation of these measurements is derived for different time
intervals between calibration. The results are shown in the bottom half of
figure 3.19. This routine was performed for intervals of up to 4 hours, and
a linear fit of the deviations gave an increase in the standard deviation of
δν/ν = 0.04(11) ppb/h.

Measurement max. time span (h) (∆R/R)inter. (ppb)
6Li 1.0 0.2

6,8He 3.4 0.5

Table 3.7: Systematic error due to the magnetic field fluctuations
(∆R/R)inter. depending on the largest time span between calibrations for
the 6Li and 6,8He mass measurements.

Table 3.8 gives the systematic error due to the magnetic field fluctua-
tions used for the 6Li and 6,8He mass measurements. To be conservative,
we determined the error from the largest time span seen between the 7Li
calibrations.

91



3.4. TITAN Penning trap trap-independent systematic errors

3.4.2 Effect of ion-ion interaction in the Penning trap

When more than one ion is present in a Penning trap, the individual eigen-
motions are perturbed by the Coulomb interaction between the ions. This
effect can happen for simultaneous trapping of multiple ions of the same
species or different species. Frequency shift due to the storage of multiple
ions can be minimized by ensuring to have small numbers of ions in the
trap and by reducing the unwanted species contamination. In general, only
one to at most five ions are stored simultaneously in the trap, where the
number is determined from the number of counts recorded on the MCP de-
tector. Possible contamination ions could either come with the beam or can
be created in the Penning trap.

The first type of contamination comes either from the ion source (ISAC
or off-line source) or is generated in the RFQ when using singly charged ions.
When contamination is produced at ISAC, depending on its mass difference
with respect to the desirable species, it could be resolved and removed using
the separator. The resolution of the mass separator is m/∆m = 3000. In
the case of 6He and 8He, all the contamination has been resolved using the
mass separator (table 2.1).

Other type of contamination could come from the RFQ, where the beam
can undergo charge exchange with the buffer gas or residual gas. However,
the RFQ can perform a mass-selection and the mass difference between the
lightest contaminant (A = 18) and mass A = 6, 8 is large enough to remove
it from the RFQ. When two species cannot be resolved using the RFQ, such
as 6Li and 7Li, it could be removed using the time-of-flight gate, which has
a resolving power of 20. In the case that all pre-selection is insufficient, the
contaminant is removed by the application of a dipolar excitation at the
reduced cyclotron frequency in the Penning trap. This excitation results in
an increase of the reduced cyclotron motion radius and can achieve resolving
power of at least 106.

The second class of contamination is formed inside the Penning trap and
depending on the nature of the ion, it could also interact with a residual
gas molecule via charge exchange or form a molecule. Another source of
contamination, which arises only for radioactive ions, is when decay products
remain in the trap. Both 6He+ and 8He+ decay through β− emission

6,8He+ →6,8 Li2+ + e− + ν. (3.58)

Because of the relatively low trapping potential V0 = 3.6 V compared to
the Q-value of the decay, only a tiny fraction of the 6,8Li2+ produced by
the decay remains trapped. However, the outgoing electron or positron can

92



3.4. TITAN Penning trap trap-independent systematic errors

0 1 2 3 4
0.07

0.08

0.09

0.10

0.11

0.12

0.13

 

 

c 
- 9

 4
50

 8
07

 (H
z)

<Number ion>/class

slope = 4(18) mHz/ion

Figure 3.20: Typical count rate analysis for one 6Li spectrum. The slope of
the linear regression is 4 ± 18 mHz/ion.

ionize residual gas or sputter material from the electrodes. The contami-
nation formed in the trap during the quadrupolar excitation phase cannot
be removed. Therefore, because the ion can interact with residual gas or
decay products, the effect of that contamination on the measured cyclotron
frequency needs to be investigated.

The possible frequency shifts are investigated by a count rate analysis
[Kel03] on the individual measurements. In such an analysis, the data of
a given measurement is divided into three different classes regarding the
number of detected ions. For each of these classes, the cyclotron frequency
is fitted and a linear regression of the frequencies is performed. Figure 3.20
shows an example of such a linear regression. As it can be seen, the fluc-
tuations in the frequency are well within error, which results in a negligible
slope of 4 ± 18 mHz/ion.

However, in order to have quantitative information about the change in
frequency with the number of ions, such fits were performed for all spectra
taken during the measurements (if there were enough recorded counts to
perform the fit) presented in this thesis. The shift in frequency due to the
number of trapped ions was taken as the weighted mean of all the slopes
from the fits.

The resulting shifts in frequency as a function of the number of trapped
ions are shown in table 3.8. While the measurements for 7Li display a down-
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Specie Slope ∆νc (mHz/ion) N
7Li -1.4(2.9) 115
6Li 8.4(3.2) 77

Both Li 3.1(2.2) 189
4He -18.5(14.2) 5
6He -9.3(51.4) 8
8He 100.2(150.0) 5

Table 3.8: Cyclotron frequency shift due to the interaction of multiple ions
in the Penning trap for all measurements presented in this thesis. N is the
number of measurements used to calculate the average slope.

wards frequency shifts within error, the measurements for 6Li are consistent
with a non-zero upward shift. This excludes possible interaction of 6Li with
ionized background gas, as it would have shifted the frequency downwards.
The frequency shift were taken as the weighted mean of the 6Li and 7Li
shifts leading to a shift of 3.1(2.2) mHz/ion. Table 3.8 also shows the fre-
quency shifts for 4He, 6He and 8He. The larger error for 8He comes from
lower statistics.

Specie N (∆R/R)ion (ppb)
4He 2 4.3
6Li 3 0.2
6He 2 8.1
8He 1 13.3

Table 3.9: Cyclotron frequency ratio shift (∆R/R)ion due to the interaction
of multiple ions in the Penning trap. N is the number of ions chosen in the
analysis. Ncal. = 3 for 7Li.

Based on equation (3.3), the shift in the frequency ratios due to the
ion-ion interaction is calculated using

(∆R/R)ion = (Ncal. − ε)∆νc,cal./νc,cal. − (N − ε)∆νc/νc, (3.59)

where ε = 0.6 is the detection efficiency of the MCP and ∆νc, ∆νc,cal. are
the frequency shifts with the number of ions for the ion of interest and
calibration respectively. The maximum number of detected ions chosen in
the analysis for the ion of interest and the calibrant are given by N and
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Ncal. respectively. This gives a conservative estimate of the error due to
the ion-ion interaction and in the present cases most of the events contain
less than the maximum number of detected ions. In fact, considering the
detection efficiency of the MCP, the average number of true ions at the end
of a trap cycle for 6He and 8He were respectively less than 0.7 and 0.2 ions.

Using equation (3.59), we calculated the error on the frequency ratio due
to the multiple ions in the Penning trap using the values from table 3.8 and
the results are in table 3.9. N = Ncal. = 3, was chosen for 6Li and 7Li as
the slope (and its uncertainty) for these species is relatively small, and very
little contamination was seen in the TOF distribution of these species. As
more contaminant are present for the helium isotopes, we decided to keep at
most two detected ions for 4,6He, in order to be conservative. For 8He, due
to its low count rate and the large uncertainty in ∆νc, we decided to keep
only one detected ion. The values for the frequency ratio shift (∆R/R)ion
shown in table 3.9 are taken as the upper value on the uncertainty.

3.4.3 Relativistic effects on the cyclotron frequency

The derivation of the equation of motion in section 2.1.1 assumes that the ion
motion is non-relativistic. However, when the cyclotron frequency of a light
ion is measured with enough precision, relativistic effects are important and
have to be taken into account. For example, the average velocity of a 6Li+

ion moving at the reduced cyclotron frequency with an initial magnetron
radius of 1 mm in TITAN’s Penning trap is approximately 1 × 10−4 c.
This, according to special relativity, would modify the measured cyclotron
frequency from the one given in equation (2.46) by 5 × 10−9, which is at
the level of precision that the masses of 6Li, 6,8He are determined.

The relativistic expression for the cyclotron frequency is

νc(t) =
1

2π
q ·B
γ ·M0

= νc,0 ·
√

1− β(t)2 (3.60)

where β(t) is the velocity of the ion in the trap divided by the speed of
light, M0 is the ion rest mass and νc,0 is the non-relativistic cyclotron fre-
quency. As the velocity of the ion changes over the excitation time, this
consequently modifies the cyclotron frequency. Therefore, we approximate
the ion’s velocity in the trap as the time-averaged velocity βc.

Since the reduced cyclotron frequency ν+ is several orders of magnitude
larger than the magnetron frequency ν−, the average velocity of the ion in
the trap is dominated by the reduced cyclotron motion ν+

β ' ρ+ · 2π · ν+/c = ρ−,ini · k · 2π · ν+/c, (3.61)

95



3.4. TITAN Penning trap trap-independent systematic errors

where ρ−,ini is the initial magnetron radius of the ion in the trap and k
is a integration constant obtained by integrating the radius of the reduced
cyclotron motion ρ+ over the measurement period:

k =
1

TRF

∫ TRF

0

∣∣∣∣∣k0 sinωBte−δt/2

2ωB

∣∣∣∣∣dt. (3.62)

The ions are provided with their initial magnetron radius prior to their in-
jection in the Penning trap using a Lorentz steerer. Studies and simulations
of this device have shown that the initial magnetron radius ρ−,ini provided
by the Lorentz steerer is proportional to its steering voltage ∆VLS :

ρ−,ini = s ·∆VLS , (3.63)

where s is the steering strength. Hence, the size of the cyclotron frequency
shift can be controlled by changing the steering voltage ∆VLS :

νc = νc,0
√

1− (a ·∆VLS)2 (3.64)

where
a = s · k · 2π · ν+/c. (3.65)

Then, the corrected mean frequency ratio to account for relativistic effects
is given by

Rrel.corr. = Rmeas. · (1− (∆R/R)rel.) (3.66)

where Rmeas is the measured mean frequency ratio for the given ∆VLS and
∆VLS,cal. and

(∆R/R)rel. = 1−
√

1− (a ·∆VLS)2√
1− (acal. ·∆VLS,cal.)2

(3.67)

is the relative change in the frequency ratio. In section 3.4.3.1, we show how
the change in frequency ratio due to relativistic effect is calculated for 6Li
and in section 3.4.3.2, we show how it is done for 6,8He.

3.4.3.1 Case study of relativistic shift at the TITAN Penning
trap: 6Li

The change in the frequency ratio stemming from relativistic effect is im-
portant when the mass of a light nuclei is measured with a precision below
the 10−8 range. As the precision we aim for the 6Li mass measurement is in
the 10−9 range, we need to account for this effect and minimize it. In this
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Figure 3.21: Decrease in the measured cyclotron frequency of 6Li and 7Li
due to relativistic effects as a function of ρ−,ini. When ρ−,ini(7Li) = 1.12(3)
mm and ρ−,ini(6Li) = 0.96(2) mm (circle), the shift in cyclotron frequency
for 6Li and 7Li are similar. For the same value of ρ−,ini(7Li), if ρ−,ini(6Li) =
1.44(2) mm (square), the cyclotron frequency of 6Li shifts down by 6 ppb.

section we outline how the relativistic correction was accounted for during
the 6Li mass measurement. Prior to the 6Li mass measurement, shifts in cy-
clotron frequency due to the relativistic effect have been investigated for 6Li
and 7Li ions by varying the steering voltage ∆VLS . The results are shown
in figure 3.21. This figure shows the change in frequency for the two species
in part-per-billion (ppb) as a function of the initial magnetron radius of the
ion ρ−,ini. The cyclotron frequencies of 6Li and 7Li shows a decrease with
increasing ρ−,ini following the behaviour of equation (3.64).

Depending of the relative velocities of 6Li and 7Li, the shift in the cy-
clotron frequency ratio due to relativistic effects (∆R/R)rel. is different. In
order to verify the effect of different velocities for 6Li and 7Li in the Pen-
ning trap on Rmeas., four independent series of 6Li to 7Li frequency ratio
measurements were performed. Different values of ∆VLS (and consequently
ρ−,ini) were chosen and the measured average frequency ratio Rmeas. are
shown in table 3.10.

The frequency ratio of data sets A-B-C all agree within error while data
set D deviates by 5.5 ×10−9. Figure 3.22 shows that this is because of
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3.4. TITAN Penning trap trap-independent systematic errors

D.S. ρ−,ini (6Li,7Li) (mm) Rmeas. × 106 Rrel.corr. × 106 N

A 1.10(2), 1.20(3) 857 332.053 7(8) 857 332.054 0(17) 12
B 0.96(2), 1.12(3) 857 332.053 9(9) 857 332.054 2(15) 9
C 1.20(2), 1.20(3) 857 332.054 8(7) 857 332.054 2(17) 13
D 1.44(2), 1.12(3) 857 332.058 6(8) 857 332.053 9(19) 9

Total 857 332.054 1(8) 43

Table 3.10: Measured mean frequency ratios Rmeas. (and their statistical
uncertainties) for different ρ−,ini for the four data sets (D.S.). Rrel.corr.
are the ratios corrected for the relativistic mass increase and include both
statistical and systematic errors. N is the total number of frequency ratios
measured in the data set.

the large difference in velocity ∆βc = β(6Li)c − β(7Li)c = 45(16) ×10−6

between 6Li and 7Li for data set D. This large difference in velocity results
in an enlarged frequency shift. However, as table 3.10 and figure 3.22 shows,
once corrected using equation (3.66), the four frequency ratios agree within
error.

The error on Rrel.corr. includes the errors on the fitting parameter a
from equation (3.65) and ∆VLS added quadratically to the statistical errors.
Table 3.10 shows that the four corrected mean frequency ratios agrees within
error. The total corrected frequency ratio Rtot.rel.corr. = 0.857 332 054 1(8)
is then taken as the weighted mean of the Rrel.corr. from the four data sets.
More information about the 6Li mass determination is found in section 3.6.

3.4.3.2 Case study of relativistic shift at the TITAN Penning
trap: 6He and 8He

The 6He and 8He cyclotron frequencies are affected by relativistic effects
(because of their light masses) at the level of precision for which measure-
ments aimed for. However, the change in frequency due to relativistic effects
was not measured directly prior to these measurements. Therefore, the rel-
ativistic corrections have to be evaluated from studies and simulations.

The basic idea consists of evaluating the various components of equa-
tion (3.65) and then, using equation (3.67) to calculate the relativistic rel-
ative change in the frequency ratio (∆R/R)rel. for a given steering voltage
for the different species during the 6He and 8He measurement.

The first coefficient of equation (3.65) we calculate is the steering strength
s. This quantity dictates the potential needed on the Lorentz steerer in order
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Figure 3.22: Deviation of the four Rmeas. and Rcorr. presented in table 3.10
with respect to Rtot.rel.corr., represented by the error band. The relativistic
effect can be effectively corrected using Eq .(3.66) as all Rcorr. agrees within
error including the case D for which its Rmeas. was inconsistent with the
other measurement.

to provide the ion with a certain magnetron radius. The steering strength s
is determined from a SIMION [Dah00] simulation. Such a simulation calcu-
lates the motion of an ion inside the electric field produced by the electrode
geometry of the ion optics and through the magnetic field produced by the
3.7 T magnet. In order to determine the steering strength in such a simula-
tion, the key parameters are the ion’s mass and its kinetic energy inside the
steerer [Rin07].

The ion’s energy in the Lorentz steerer depends on its transport energy
along the beam line and the potential applied on the Lorentz steerer. In
theory, the transport energy of the beam between the RFQ and the Penning
trap depends on the potential difference between the RFQ floating potential
(HV) and the pulse drift tube (PB5) potential E ≈ ∆V = VHV − VPB5.
To test this, the ion beam energy has been measured using a retarding
field analyzer (see [Cha09] for more info) for various differences in applied
voltage ∆V . The results are shown in the first four rows of table 3.11.
Also shown are the corresponding potentials applied on the 2 × 45 degree
benders situated between the vertical beam line section above the RFQ
and the horizontal section prior to the Penning trap (see chapter 2). The
acceptance of the beam through these benders is very energy sensitive and
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∆V (V) ∆B1 (V) E(meas.) (eV) FWHM (eV)
954 304 1035.8 5.6

1 028 323 1079.7 7.2
(2500) 739 2513.2 8.4
2 936 916 3050.4 8.2

∆V (V) ∆B1 (V) E(inter.) (eV) error (eV)
1 015 N/A 1069 23
N/A 326 1098 22

∆V (V) ∆B1 (V) E(inter.) (eV) error (eV)
1 015 326 1084 16

Table 3.11: The first four rows gives the measured beam energy E(meas.)
using a retarding field analyzer as a function of the potential difference ∆V
between the RFQ HV bias and pulse drift tube read back voltage. For the
third row, pulse drift tube was not used. The 5th and 6th rows gives the
beam energy from a linear interpolation using the bending and pulse drift
tube voltage. Both of these values agrees within error. The last row is a
weighted average of the 5th and 6th rows.

therefore the knowledge of the bending voltage ∆B1 can also help to estimate
the beam energy.

All measurements were taken using the pulse drift tube, except for the
third row result, shown in brackets. For this measurement, the RFQ was
floated at 2.5 kV. The last column is the measured energy spread of the
beam, provided for future reference. Table 3.11 shows that the only case
where the relation E ≈ ∆V is obeyed is when the pulse drift tube was not
used. For the three other cases, the measured beam energy is larger. This
indicates that the voltage outputted from the HV switch of the pulse drift
tube does not correspond to the voltage delivered to it.

Therefore the beam energy used during the 6He and 8He measurement
does not correspond to a difference in applied voltage ∆V . In order to
estimate the beam energy during the measurement, we performed a linear
interpolation of the ∆V versus E. A second estimate, based on the ap-
plied bending voltage, shown in figure 3.23, was also made. Both energies
E(inter.) are given in the fifth and sixth rows of table 3.11. The two results
agrees within error and their weighted mean E(inter.) is given in the last
row of table 3.11. Since the ion’s energy in the Lorentz steerer depends also
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Figure 3.23: Beam energy as a function of the optimal bending voltage.
Given are the slope m and y-intercept b of the linear regression as well as an
estimation of the beam energy during the 6He and 8He mass measurement.

on the bias potential of the Lorentz steerer, we also need to take this into
account in the simulation. During the experiment this potential was 955 V.

Given all these data, the steering strength s was determined for the
different atomic masses measured during the experiment by changing the
steering potential ∆VLS and recording the radial displacement ρ−,ini of the
ion once it reaches the Penning trap. The steering strength s is then given
by a linear regression of ρ−,ini versus ∆VLS . Table 3.12 shows the resulting
steering strength s calculated for two beam energies corresponding to the
lowest and highest values on E(inter.). The average steering strength is
simply the average value for the two energies.

The next quantity to evaluate in equation (3.65) is the constant k given
by equation (3.65). Using a damping parameter δ ∼ 1 s−1, estimated from
the theoretical line shape of time-of-flight resonance spectra, as well as the
excitation time and amplitude used during the measurement, we found that
k = 0.62.

The last quantity to evaluate is the reduced cyclotron frequency ν+ of the
various ions. This was calculated from the measured magnetron frequency of
7Li (ν− = 672.3(4) Hz) obtained during the 6He and 8He mass measurement
and using equation (2.22).

We then calculated the coefficients a presented in table 3.13 using equa-
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A s(1068 eV) (µm/V) s(1100 eV) (µm/V) s (µm/V) a ×10−6V−1

4 25.8 23.0 24.4(1.4) 4.5(3)
6 31.4 28.1 29.7(1.7) 3.7(2)
7 33.9 30.2 32.1(1.8) 3.4(2)
8 36.2 32.2 34.2(1.9) 3.2(2)

Table 3.12: Steering strength s obtained from simulation using the upper
and lower values of the beam energy for the atomic masses of interest. s is
the average value.

A ∆VLS (V) β× 10−5 βcal.× 10−5 (∆R/R)rel. × 10−9

4 15 6.8(4) 5.1(3) 1.0(3)
6 15 5.5(3) 5.1(3) 0.2(2)
6 23 8.4(5) 7.8(3) 0.5(5)
8 15 4.7(3) 5.1(3) -0.2(2)
8 23 7.3(4) 7.8(3) -0.4(5)

Table 3.13: Relative frequency ratio shift (∆R/R)rel. due to relativistic
effect for singly charged ions with mass number A = 4, 6, 8 using a singly
charged ion with mass number Acal. = 7 for calibration. The calibration
have the same steering potential as the ion of mass number A.

tion (3.67). Finally, using these coefficients and the Lorentz steering voltage
∆VLS applied during the experiment, we calculated the relative frequency
ratio shifts shown in table 3.13 using equation (3.66). As table 3.13 shows,
the frequency ratios are mainly unaffected by the relativistic effect. This is
because by giving the same steering voltage for both the ion of interest and
the calibration, the two ions moves at about the same speed in the Penning
trap resulting in a minimal change in the frequency ratio.

3.5 Summary of the systematic errors

We presented the different sources of systematic error on the measured cy-
clotron frequency arising from the imperfections of the real Penning trap,
such as the magnetic field inhomogeneities, the misalignment with the mag-
netic field, the harmonic distortion of the trap potential and the non-harmonic
terms in the trapping potential. We also presented trap-independent sys-

102



3.6. Benchmark high-precision mass measurement at TITAN Penning trap: 6Li

tematic errors such as the error due to the interaction of multiple ions in
the trap, the magnetic field time-fluctuations and the error due to relativis-
tic effects. Table 3.14 summarize the various sources of systematic errors

Error ∆R/R (× 10−10)
Magnetic field inhomogeneities 0.2 · ∆A
Misalignment and harm. distor. 42 · ∆A

Incomplete compensation 5(5) · ∆A
Non-lin. mag. fluct. 1.5 · ∆t

Table 3.14: Sources of systematic errors on the frequency ratio measurement
arising from imperfections of TITAN’s Penning trap. ∆A = Acal.−A is the
mass difference between the calibration and ion of interest. ∆t is the time
span between two calibrations in hours.

discussed and their size. All the estimated errors are for a trap with V0 =
36 V. The largest source of error comes from the conservative estimate of
the misalignment with the Penning trap with the magnetic field. All these
systematic errors depend on the mass number difference ∆A, which means
that when the mass measurement is performed using a calibrant and species
of the same mass number, the shift on the frequency ratio will be effectively
quenched. The error due to the number of ions in the trap are not shown as
they are species-dependent. For the magnitude of this error for the 6Li, 6He
and 8He measurements, refer to section 3.4.2. The error due to relativistic
effects is not shown as its dependance on several factors such as the beam
energy, the masses involved and their relative steering voltages. For the
calculations of this source of error for the 6Li measurement, refer to section
3.4.3.1 and for the 6He and 8He measurement, refer to section 3.4.3.2.

3.6 Benchmark high-precision mass measurement
at TITAN Penning trap: 6Li

Precise and accurate stable masses are important in nuclear physics because
of their use as calibrants for mass measurements on radioactive species. One
example is 6Li, which is the calibration mass used for the mass measurement
of the radio-active nuclei 8He [Ryj08], 8Li, 9Li and 11Li [Smi08b] by the
TITAN experiment.

A recent Penning trap mass measurement of 6Li by SMILETRAP [Nag06]
shows a disagreement of 5 σ with the AME03 value [Aud03]. The AME03
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value is based entirely on a Penning trap measurement from the JILATRAP
Penning trap experiment [Hea01]. Such a discrepancy needs to be resolved
before mass measurements on unstable ions can be performed to a level of
precision below 10−8 using 6Li as a calibration species. To do so, the mass
of 6Li has been measured at the TITAN facility using 7Li as a calibrant,
which has a relative uncertainty of only δm/m = 6×10−10 [Nag06].

In this section we present the mass measurement of 6Li. This is the first
stable mass measured at the TITAN facility and it represents a test case
regarding the precision achievable by the mass spectrometer.

3.6.1 The 6Li mass measurement

The 6Li mass measurement was carried out in May 2009 after the detailed
systematic studies of the TITAN Penning trap had been completed. Both
6Li and its calibrant 7Li were produced by the TITAN off-line ion source,
transported at an energy of 2 keV and non-isobaric contamination was fil-
tered out using the time-of-flight gate. The injection and capturing of the
beam has been carefully optimized prior to the measurement. Four series
of measurements were taken, each lasting approximately 12 hours. Both
species were excited for 997 ms to reach the required precision on the mea-
surement. To minimize possible shifts due to time-dependent variation of
the magnetic field, each TOF spectrum measurement lasted 30 minutes and
each 6Li measurement was bracketed between two 7Li measurements.

Figure 2.15 shows a 6Li resonance taken during the measurement to-
gether with a fit of the theoretical function given by equation (2.45). The
different sources of systematic error in the determination of the frequency
ratios were investigated prior to the measurement and summarized in section
3.5.

Rtot.rel.corr. 0.857 332 054 1(8)
Rmas.corr. 0.857 332 053 6(9)
Rfinal 0.857 332 053 6(37)

Table 3.15: Weighted mean of these corrected frequency ratios Rtot.rel.corr.,
frequency ratio once corrected for the incomplete compensation of the trap-
ping potential Rmas.corr. and final frequency ratio of 6Li versus 7Li.

The frequency ratios of the four series of measurements are corrected
for relativistic effects as presented in section 3.4.3.1. The weighted mean of
these corrected frequency ratios Rtot.rel.corr. is presented in table 3.15. This
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Error ∆R/R × 10−9

Relativistic and statistical 1.0
Compensation 0.4

Ion-ion interaction 0.2
Nonlinear B-field fluct. 0.2

Misalignment and harm. distor. 4.2
Total 4.3

Table 3.16: Error budget for the frequency ratio measurement Rfinal which
includes the different causes of error discussed in the text.

table shows the frequency ratio Rmas.corr. once corrected for the incomplete
compensation of the trapping potential. The most dominant sources of un-
certainty are presented in table 3.16 together with the statistical uncertainty
and the uncertainty due to the incomplete compensation. The other sys-
tematic effects include the error due to the interaction of multiple ions in
the trap and the error due to the non-linear fluctuations of the magnetic
field. The dominant source of uncertainty, of 4.2 × 10−9, comes from the
estimate of the misalignment of the trap with the magnetic field axis. All
other sources of uncertainty are below the 10−9 range. Table 3.15 presents
the final frequency ratio Rfinal including all the sources of uncertainties.

Using equation (2.49), the 7Li mass m(7Li) = 7.016 003 425 6(45) u
(1 u = 931 494.009 keV in natural units) and including the first electron
ionization energy of Li [Lor82], the 6Li mass measured by TITAN is m(6Li)
= 6.015 122 889(26) u with a corresponding mass excess of ME(6Li) = 14
086.881(25) keV. Figure 3.24 shows that this new 6Li mass confirms the
SMILETRAP mass value m(SMILE) = 6 015 122.890(40) u [Nag06] while
improving the precision by a factor of 1.5.
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Figure 3.24: 6Li mass excess as measured by the JILATRAP [Hea01],
SMILETRAP [Nag06] groups and the present work. The TITAN value is in
good agreement with [Nag06].
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Chapter 4

6He and 8He mass
measurement results and
discussion

Halo nuclei are a well-suited test-bench for nuclear ab-initio methods. This
is because the extreme properties of halo nuclei, such as their low valence
neutron separation energies and large difference in matter and charge radii
are a challenge for theory. Testing ab-initio methods against charge radii,
binding energies and two-neutron separation energies derived from the TI-
TAN masses gives us a chance to reveal strengths and weaknesses of the
different methods and also motivate improvements from the theory side.

This chapter presents the results of the mass measurements of the halo
nuclei 6He and 8He using the TITAN Penning trap. To compare our results
to theory, we use the TITAN masses to obtain new charge radius values.
The more precise and accurate mass removes the atomic mass as a sources
of systematic error on the charge radius determination. These new charge
radii and masses are then used to test nuclear theories based on ab-initio
methods.

4.1 First 8He mass measurement

The first 8He mass measurement at TITAN was carried out in November
2007. The 8He were produced using 500 MeV protons from the TRIUMF
cyclotron at a current of 20 µA hitting a high power silicon-carbide target.
The beam was ionized using the FEBIAD ion source (see section 2.1). The
beam was transported at an energy of 20 keV and cooled with hydrogen in
the RFQ. The 6Li used as calibrant was produced by the TITAN off-line
ion source. A 20Ne pilot beam was used to tune through the RFQ yielding
a 57 % transmission efficiency. The 8He yield measured at the yield station
was 3100 counts/s. Thus, because of this low incoming count rate, each 8He
time-of-flight measurement took 68 minutes. The count rate on the time-of-
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4.1. First 8He mass measurement

flight detector was three 8He ions per minute. 8He was excited for 90 ms,
while the 6Li was excited for 400 ms.

This first mass measurement of 8He is based on three 8He resonance
curves, each bracketed by 6Li resonance curves. Table 4.1 shows the three

Isotope R × 106 N
8He 1.335 653 449 (90) 201
8He 1.335 653 711 (120) 192
8He 1.335 653 447 (80) 220

Mean 1.335 653 480 (54)(107) 613

Table 4.1: Measured cyclotron frequency ratios R = νc(6Li)/νc(8He) for 8He
using 6Li as calibration. N is the number of measurement in each series.
Also shown is the weighted mean of these frequency ratios. The first number
in parentheses represent the statistical uncertainty and the second number
the systematic uncertainty.

corresponding frequency ratios as well as their weighted mean.
After the 8He mass measurement, it was found that the cyclotron fre-

quency of the ion changes with the repetition rate leading to a shift in the
frequency ratio when the calibration and the ion of interest cyclotron fre-
quencies are measured using different repetition rates. This effect has been
investigated and found to be due to a repetition rate-dependant change of
the beam energy coming from the RFQ. As changes in the cyclotron fre-
quency of 8 × 10−8 were found during these studies, this was the largest
source of systematic error for this measurement. This systematic uncer-
tainty is given by the second number in parentheses for the weighted mean
value of the frequency ratio shown in table 4.1.

Experiment m(6Li) (u) ∆ (6Li) (keV)
SMILETRAP 6.015122891(40) 14086.882(37)

TITAN 6.015122889(26) 14086.881(25)
Average 6.015122890(22) 14086.881(20)

Table 4.2: 6Li masses m and mass excess ∆ as determined from the fre-
quency ratios measured by SMILETRAP [Nag06] and TITAN experiment
[Bro09].

Using the weighted mean of the TITAN 6Li mass measurement and the
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Figure 4.1: 6He (left) and 8He (right) time-of-flight resonance spectra. Also
shown are the half-life of these species and the relative statistical uncertainty
on the fitted cyclotron frequency.

value from [Nag06] as 6Li mass (see table 4.2) and using equation (2.49),
we determined the 8He mass as 8.033 935 669(722) u with a corresponding
mass excess of 31 610.872(673) keV. This is within the given error bar but is
110 eV more massive than the result presented in [Ryj08], which used a 6Li
mass based on the weighted mean of the masses from [Nag06] and [Hea01].

4.2 Second 8He and the 6He mass measurements

A 6He and a second 8He mass measurement was performed in May and June
2008. The beam was produced and ionized using the same technique as for
the first 8He mass measurement, except a higher proton current of 80 µA
was used. The cyclotron frequency measurements performed in May where
done with a 37 keV beam energy, while the beam energy in June was 20 keV.
Similar transmission efficiency of the 20Ne pilot beam through the RFQ as
for the first 8He mass measurements were seen.

This series of measurements includes 12 6He and 17 8He frequency ratios
determination using 7Li as the calibrant. Time-of-flight resonance spectra
of both species are shown in figure 4.1. All the measurements are shown in
figure 4.2 and sorted according to the Lorentz steerer voltage used in order
to apply different relativistic corrections on them. This is because different
steering voltages lead to a change of the ion velocity in the trap and therefore
different relativistic effect. The first four 8He measurements with Lorentz
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Figure 4.2: 6He (a) and 8He (b) frequencies ratio R measurements.

steering voltage ∆VLS = 15V are treated separately as they were performed
in non-optimal conditions. The bands represents the one sigma statistical
uncertainty on the weighted mean of the frequency ratios in the data set.

In order to test the consistency of the data, we calculated the Birge ratio
χ [Bir32]:

χ =

√√√√ 1
N − 1

N∑
i=1

(
Ri −R
σRi

)2

, (4.1)

where N is the number of frequency ratio measurements, Ri are the individ-
ual frequency ratios and R is their weighted mean. The uncertainty on the
Birge ratio is given by 0.4769/

√
N [Bir32]. A Birge ratio of one means that

the fluctuations are purely statistical, if it is greater than one it means that
there could be systematic effect present that are not accounted for, while a
Birge ratio smaller than one indicates that the uncertainties could be overes-
timated. The Birge ratios of the various data sets are shown figure 4.2. The
∆VLS = 15V 6He data set has a Birge ratio in agreement with one, while
the second data set is slightly below one. The 8He data have a larger scatter
than the 6He data, which is shown by its Birge ratios that are slightly above
one. Note that the weighted mean of the all the ∆VLS = 15V 8He data,
including the first four measurements, gives a Birge ratio of 1.52(13), which
is clearly above one. This is one indication that the first four measurements
should be treated differently.

The pressure in the chamber during these measurements was 4.6 × 10−9

torr, which is considerably higher than the typical 1.9 × 10−9 torr seen
for the other measurements. This poorer vacuum was due to higher tem-
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4.2. Second 8He and the 6He mass measurements

perature in the experimental hall. Large temperature changes have shown
to affect the output potential of the power supply providing the potential
for the pulse drift tube after the RFQ. As this drift tube determines the
energy of the beam entering the Penning trap, the injection condition for
these measurements could have been non-optimal. In fact, the number of
recorded counts for the three 7Li calibration time-of-flight resonance spec-
tra taken during these measurements decreased from 10 390 down to 1 287.
After these measurements, we realized that the power supply of some optics
element between the RFQ and Penning trap had tripped off probably due
to over-heat. This could have resulted in a different beam injection in the
Penning trap and a consequent change in frequency. As we discussed in
section 4.1, the largest change in cyclotron frequency due to non-optimal
conditions found from previous studies is 8 × 10−8. Therefore, we assigned
this conservative value as systematic uncertainty on the averaged frequency
ratio of the first four measurements.

In order to test the accuracy of the Penning trap, the frequency ratio of
23 6Li and 5 4He using 7Li calibration were measured and their masses are
compared with the literature values at the end of the analysis. Table 4.3

Isotope ∆VLS (V) Rmeas. × 106 N
4He 15 570 462.612 3(15) 5
6Li 15 857 332.055 4(27) 4
6Li 23 857 332.050 8(12) 19
6He 15 857 868.444 0(51) 8
6He 15 857 868.439 6(84) 4

8He* 15 1 145 098.479 3(363) 4
8He 15 1 145 098.360 0(75) 9
8He 23 1 145 098.345 6(164) 4

Table 4.3: Mean measured cyclotron frequency ratios Rmeas. for 4He, 6Li,
6He and 8He using 7Li for calibration. The Rmeas. are sorted according to
the correction tube VTUBE and Lorentz steering ∆VLS voltage used. N is
the number of measurements in each series. The errors are purely statistical.

gives the weighted mean of the 4He, 6Li, 6He and 8He to 7Li frequency
ratios, sorted according to the Lorentz steerer voltage used during the mea-
surement. The star (*) denotes the 8He measurement series taken in non-
optimal condition.

The relativistic effects are not the dominant sources of systematic error
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4.2. Second 8He and the 6He mass measurements

on the measurements. In fact, the main sources of systematic errors on

Error ∆R/R × 10−9 (6He) ∆R/R × 10−9 (8He)
Statistical 4.9 5.9

Ion-ion interaction 8.1 13.3
Total 9.4 14.6

Table 4.4: Error budget for the frequency ratio measurement Rfinal for
6,8He, which includes the statistical error and the error due to the interaction
of multiple ions in the trap.

the 6He and 8He cyclotron frequency ratios comes from the interaction of
multiple ions in the trap as shown in table 4.4. The contribution from the
other effects are all below the 10−9 level and therefore have a negligible
contribution to the final uncertainty.

Lastly, we checked the accuracy of the Penning trap by measuring the
frequency ratios of 4He to 7Li and 6Li to 7Li. Using these frequency ratios,
presented in table 4.3 and equation (2.49), we evaluated the mass of 4He and
6Li and compared it with the values from the literature ([Aud03] for 4He and
table 4.2 for 6Li). Table 4.5 gives the difference δ∆ = ∆(TITAN)−∆(lit.)

Isotope ∆(TITAN) (keV) ∆(lit.) (keV) δ∆ (eV)
4He 2 424.915(18) 2 424.915 65(6) -1(18)
6Li 14 086.867(9) 14 086.881(20) -14(22)

Table 4.5: Difference between TITAN’s and the literature mass excesses ∆.
The literature M.E. for 4He and 24Mg are from [Aud03], while for 6Li we
took the weighted mean of the values from [Nag06] and [Bro09].

between the mass excess measured by TITAN during this experiment and the
literature mass excess. The error on this difference is taken as the error of the
TITAN and literature mass excess added in quadrature. These differences
are all within error, which shows that there is a good agreement between the
stable masses measured during the 6He and 8He mass measurement and the
values from the literature. This is an indication that the systematic errors
have not been under-estimated. This leads to the final frequency ratios
Rfinal shown in table 4.6. Using the Rfinal presented in table 4.6 together
with equation (2.49), we evaluated the masses of 6,8He and the results are
shown in table 4.7. The table compares the latest 8He measurement with
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Isotope Rfinal × 106 δR/R (ppb)
6He 857 868.442 9(82) 9.5

8He* 1 145 098.479 2(997) 87.1
8He 1 145 098.357 4(167) 14.6

8He (average) 1 145 098.360 7(164) 14.4

Table 4.6: Mean corrected cyclotron frequency ratios Rfinal of 6,8He, to-
gether with the relative uncertainty on these ratios.

Isotope mass (× 106 u) M.E. (keV)
6He 6 018 885.883(38) 17 592.087(35)

8He (1st) 8 033 935.669(722) 31 610.872(673)
8He (2nd) 8 033 934.404(115) 31 609.694(107)

8He (average) 8 033 934.435(114) 31 609.723(106)

Table 4.7: Masses and mass excesses of 6,8He. Both the first and second
mass determination of 8He are shown. Also shown is the weighted mean of
the two 8He masses.

the published one [Ryj08]. Both results agree within two sigma.

4.3 Calculation of the binding energy and
point-proton radius for 6He and 8He

In this section, we calculate the charge radius, point-proton radius, two
neutron separation energy and binding energy of 6He and 8He. The last
three quantities are used to compare with theory.

The binding energies are compared in order to investigate any possible
systematic difference between the predicted binding energies and the exper-
imental ones.

The reason for a comparison of the predicted two-neutron separation
energy S2N with the measured values is the following: 6He and 8He are
bound if they have a S2N > 0. Then, using the two-neutron separation
energy, the prediction of a bound or unbound state for an ab-initio method
can easily be checked. When the values from theory are available, the two-
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4.3. Calculation of the binding energy and point-proton radius for 6He and 8He

neutrons separation energy of the ab-initio method is calculated:

S2N (6,8He) = Epred.B (4,6He)− Epred.B (6,8He) (4.2)

where Epred.B are the predicted binding energies.
The point-proton radius is calculated in order to compare the measured

charge radius with the ab-initio prediction. These methods assume that the
protons and neutrons are point-like particles. As the charge radius obtained
experimentally includes the physical extent of the proton and neutrons, it
needs to be adjusted.

4.3.1 Binding and two-neutron separation energy of 6,8He

The binding energy of a nucleus is the energy necessary to break the nu-
cleus into individual proton and neutrons, while the two-neutron separation
energy is the energy necessary to remove two neutrons from the nucleus.
Table 4.8 gives the 6,8He binding energies EB:

Isotope EB (keV) S2N (keV)
6He -29 271.123(35) 975.46(19)
8He -31 396.155(59) 2125.03(25)

Table 4.8: Binding energies EB and two-neutrons separation energies S2N

of 6,8He using TITAN’s mass excesses and the AME03 4He mass excess.

EB(N,Z) = m(N,Z)− ZmH −Nmn (4.3)

where mH is the hydrogen mass, m is the atomic mass, mn the neutron mass
and Z, N , the number of protons and neutrons in the nucleus. Table 4.8
also gives the two-neutron separation energies S2N calculated using equa-
tion (4.2). The two-neutron separation energy of 6He is calculated using the
4He mass from the AME03 [Aud03].

4.3.2 Charge and point-proton radius of 6,8He

The nuclear charge radius is defined as

〈r2
c 〉 =

1
Ze

∫
r2ρ(r)d3r (4.4)
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4.3. Calculation of the binding energy and point-proton radius for 6He and 8He

where Z is the nuclear charge, e the elementary charge, r the radial dis-
tance from the nucleus centre and ρ is the radial charge density. From equa-
tion (4.4), it can be seen that the charge radius is a measure of the extent
of the charge distribution in the nucleus and hence the proton distribution.
As described in section 1.1.2.4, it can be determined using a combination of
isotopic shift measurements and atomic physics calculations.

Transition δνA,4MS(AME03) δνA,4MS(TITAN)
6He 23S1 → 33P0 43 196.204(15) 43 196.1573(8)
6He 23S1 → 33P1 43 195.943(15) 43 195.8966(8)
6He 23S1 → 33P2 43 196.217(15) 43 196.1706(8)
8He 23S1 → 33P1 64 701.999(74) 64 702.0982(9)
8He 23S1 → 33P2 64 702.409(74) 64 702.5086(9)

Table 4.9: Mass shift δνA,4MS term for 6,8He using AME03 [Aud03] and
TITAN masses.

The charge radii 〈r2
c 〉1/2 are calculated using

〈r2
c 〉A = 〈r2

c 〉4 +
δνA,4 − δνA,4MS

KFS
, (4.5)

where 〈r2
c 〉4 is the mean-square charge radius of 4He. The mass is relevant for

the calculation of the mass shift δνA,4MS . Table 4.9 shows that the new mass
values improved the precision of δνA,4MS by a factor of almost 20 for 6He and
over 80 for 8He. This makes the nuclear mass uncertainty a negligible factor
in the charge radii uncertainty for 6He and 8He and leads to an improved
precision of 9% for 6He and 36% for 8He.

The point-proton radius 〈r2〉1/2pp is defined as the expectation value of
the proton’s position vector squared and can be calculated from the charge
radius using

〈r2〉pp = 〈r2〉c − 〈R2
p〉 −

N

Z
〈R2

n〉 −
3

4M2
p

(4.6)

where 〈R2
p〉 = 0.769(12) fm2 and 〈R2

n〉 = -0.1161(22) fm2 are the proton
and neutron mean square radii [Yao06] and 3

4M2
p

= 0.033 fm2 is a first-order
relativistic correction called Darwin-Foldy term [Fri97]. The negative value
for the neutron charge radius is caused by the negative charge distribution
of the neutron at larger distance from the neutron centre [Kop97].
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Isotope 〈r2〉1/2c (AME03) 〈r2〉1/2c (TITAN) 〈r2〉1/2pp (TITAN)
6He 2.068(11) 2.056(10) 1.913(9)
8He 1.929(26) 1.955(18) 1.835(18)

Table 4.10: New charge 〈r2〉1/2c and point-proton 〈r2〉1/2pp radii in fm, of 6,8He
using TITAN masses.

Table 4.10 shows the charge and point-proton radii of 6,8He, calculated
using equation (4.5) and (4.6) and taking into account other sources of
uncertainty in the isotopic shift measurement [Mue07]. The 8He TITAN
mass improved the precision of the charge radius uncertainty of that nuclei
by 36% while increasing its value by 0.026 fm (1.3%) due to the 11.7 keV
change in the mass value. Because of the better precision on the 6He mass
value in the AME03 [Aud03], the improvement of the charge radius from
the TITAN mass is smaller, but the 3 keV difference modifies the charge
radius by 0.012 fm (0.6%). Therefore the new mass values from TITAN led
to a reduction of the difference in charge radii between 6,8He by 0.04(3) fm.

4.4 Comparison of the results for 6,8He with
theory

In this section, the achieved results are compared to theoretical predictions,
in particular key features are tested, such as the 6He and 8He point-proton
radii, binding energies and two-neutrons separation energies. The values
are directly or indirectly derived from the TITAN mass measurement and
compared to results from the ab-initio methods described in section 1.2.
The purpose of this exercise is to address and determine the predictive pow-
ers of the various models by comparing their output results with sensitive
quantities for two different halo nuclei.

Figure 4.3 shows the binding energies predictions for 6He and 8He from
Green Function Monte Carlo (GFMC), using the AV18 two-body potential
and the Illinois-2 three body potential [Pie04], the No-Core Shell Model
(NCSM) using the CD-Bonn 2000 and INOY potentials [Cau06] and the No-
Core Full Configuration (NCFC) using a JISP16 potential [Mar09]. Also,
we show results from Hypersherical Harmonics (HH) and Coupled Cluster
theory (CC) that uses a chiral Vlowk potential [Bac09a]. As the error bars
are not visible for the experimental binding energies at this scale, they are
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represented by a straight line.
Figure 4.4 shows the two-neutron separation energy predictions for 6He

and 8He from the same methods and using the same potentials as for the
binding energies presented in figure 4.3. There are no CC results shown as
calculations results for 6He are not reliable within this theory [Hag07a].

Figure 4.5 shows the point-proton radius of 6He and 8He for GFMC
[Pie05], NCSM [Cau06] and preliminary HH and CC [Bac09b] results. Re-
sults from NCFC are not found in literature. Also shown are the matter
radius obtained from nuclear scattering experiments. These values are used
for comparison with the model predictions. The error on the matter radius
of 6He and 8He is conservatively taken as the outer error from the three
experiments [Kis05, Tan92, Alk97] shown in figure 4.5.

4.4.1 Green Function Monte-Carlo results for 6He and 8He

The Green Function Monte-Carlo (GFMC) (see section 1.2.2.1) is the only
method that calculated properties of 6He and 8He using three-nucleon inter-
action. The parameters of the three-body potential Illinois were obtained
by fitting the binding energies of nuclei with mass numbers 3 ≥ A ≥ 8,
including 6He and 8He. Hence one would expect to have a good agreement
with the measured binding energies. The binding energy of 6He calculated
using GFMC agrees within error with the TITAN value. On the other hand,
the binding energy of 8He is 320 ± 40 keV more bound than the TITAN
value, which corresponds to a 8 σ deviation. However, in absolute value,
the GFMC results are the closest to experiment. Concerning the 6He two-
neutron separation energy, the GFMC presents larger deviations with the
TITAN values and this is due to their 4He over-binding by 70(30) keV. Their
8He two-neutron separation energy is 8 σ away from the TITAN value, just
as the binding energy.

For the point-proton radius, GFMC calculations are difficult because of
the small two-neutrons separation energies of 6He and 8He [Pie07]. Changes
in the trial wave function Ψtrial and other parameters can results in changes
in the two-neutron separation energy of 200-400 keV. Because of the strong
sensitivity of the point-proton radius on the two-neutron separation energy,
this can result in a large radius as S2N approaches zero. As a solution,
the two-neutron separation energy and point-proton radius of 6He and 8He
were calculated using different Illinois potentials and also by varying the
parameters of these potentials. Figure 4.6 shows that the results all fall
within a certain band that includes the experimental values. Then, from the
results of Figure 4.6, the point-proton radius for both 6,8He where calculated
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of radius versus separation energy. This is shown in Fig. 15 which shows results for two
Hamiltonians, AV18+IL2 and AV18+IL6, each with several GFMC calculations (IL6 is
a newer, unpublished, version of IL2). The stars in each panel show the experimental
point radii at the experimental separation energies; they are clearly consistent with our
calculations which give 1.92(4) fm for 6He and 1.82(2) fm, for 8He. These numbers are
both significantly bigger than the RMS point radius of 4He which is 1.46 fm.

Figure 16 shows the point proton and neutron densities of 4,6,8He. The alpha particle
is extremely compact; its central density is twice that of nuclear matter. In these calcu-
lations it has identical proton and neutron densities which is a very good approximation.
As is shown below, the valence neutrons in 6,8He do not seriously distort the 4He core,
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Figure 16 shows the point proton and neutron densities of 4,6,8He. The alpha particle
is extremely compact; its central density is twice that of nuclear matter. In these calcu-
lations it has identical proton and neutron densities which is a very good approximation.
As is shown below, the valence neutrons in 6,8He do not seriously distort the 4He core,
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Fig. 16. – GFMC calculations, using AV18+IL2, of proton and neutron point densities for helium
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Figure 4.6: Point-proton radius rp for 6He (top) and 8He (bottom) as a
function of the two-neutrons separation energy (E′sep) for various modified
Illinois interactions. The star shows the experimental values from [Mue07].
Figure from [Pie07].
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4.4. Comparison of the results for 6,8He with theory

leading to results that agree within error with the experimental values. The
matter radii of 6,8He, however, are both larger than the values obtained from
nuclear scattering.

4.4.2 No-Core Shell Model results for 6He and 8He

The No-Core Shell Model (NCSM) (see section 1.2.2.2) 6He and 8He point-
proton radii and two-neutron separation energies were calculated using two
different potentials: CD-Bonn 2000 and the INOY. The CD-Bonn 2000 is a
meson-exchange two-body potential. The INOY potential includes a short
range phenomenological two-body potential that mimics three-body effects
[Dol03].

Using the CD-Bonn 2000 potential, the NCSM binding energies for 6He
and 8He underbinds these nuclei compared to TITAN by 2.4(3) MeV and
5.4(4) MeV respectively. This is not uncommon when only a two-body po-
tential is used. For instance, when using only the two-body AV18 potential,
the GFMC values for 6He and 8He are underbound by 5.5(1) MeV and 8.4(1)
MeV respectively. However, while the NCSM 6He two-neutron separation
energy using a CD-Bonn 2000 potential agrees within error with the TI-
TAN value, it produces an unbound 8He (negative S2N ). Again, this is not
uncommon as the GFMC two-neutron separations energies values for 6He
and 8He using only a two-body AV18 potential are -0.3(1) MeV and -0.8(1)
MeV respectively. According to the authors [Cau06], having a correct two-
neutron separation energy for 6He while 8He is unbound is said to be caused
by a wrong dependence of the binding energy with the difference between
the number of protons and neutrons.

However, the CD-Bonn 2000 potential correctly predicts the point-proton
and matter radii of both 6He and 8He. Although one could argue that an
unbound nucleus should not have a physical extent and therefore, it should
not be possible to define a charge and matter radii. This unphysical be-
haviour could be a combination of the faster Gaussian fall-off of the wave
function compared to the expected exponential asymptotic behaviour and
the small size of the Hilbert space where the calculations were performed.

The two-body INOY potential, which mimics three-body effects, binds
both 6He and 8He as seen by their positive two-neutron separation energies.
This potential reproduces very well the binding energy of 6He while it under-
binds 8He by about 1 MeV. However, the radii predictions for 6He strongly
disagree with the measurements. For 8He, the INOY potential predicts a
matter radius that is in good agreement with experiment and a slightly lower
point-proton radius.
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Concerning the No-Core Full Configuration [Mar09] calculations using
a JISP16 potential, there is no literature value for the point-proton radius,
so we only consider their two-neutron separation energy predictions. The
NCFC value for the 6He two-neutron separation energy predicts a bound
state and a binding energy that gives a better agreement with the TITAN
value than the NCSM with the CD-Bonn potential. This could be partly
due to one of the input parameter that forms the JISP16 potential is the
6He binding energy. However, the JISP16 results deviates more with TI-
TAN’s binding energy for 6He compared to NCSM using the INOY potential.
The 8He binding energies and two-neutron separation energies offers similar
agreement with experiment than the NCSM using the INOY potential.

In conclusion, because of the exponential behaviour of the valance neu-
tron wave function, halo nuclei are difficult for theoretical approaches such
as the NCSM (which uses wave functions with a Gaussian fall-off). Further-
more, it seems unlikely to accurately predict both their binding energy and
point-proton radius with a two-body potential only.

4.4.3 Hyperspherical harmonics expansion results for 6He
and coupled cluster theory results for 8He

The hyperspherical harmonics expansion (HH) (see section 1.2.2.3) and cou-
pled cluster theory method (CC) (see section 1.2.2.4) binding energy and
two-neutrons separation energy results are shown for different cut-off Λ.
This cut-off (or resolution scale) defines the size of the basis in momentum
space in which the potential is defined. In principle, once all the terms in the
Hamiltonian (equation (1.22)) are included, the calculation results should
not depend on Λ [Bog03]. Therefore, the cut-off is varied in order to probe
the effects of the non-accounted for three-nucleon interactions in the 6He
and 8He systems. The dependance on the resolution scale have not been
investigated with methods like GFMC, NCSM and NCFC.

The calculations show that for both 6He and 8He, there is a strong
dependence on the cut-off Λ and the coupled cluster calculations of 8He
underbinds this nucleus for all Λ. However, it is noticible that the HH and
CC calculations can already produce a bound state for 6He and 8He with only
a two-body potential, which is promising. Figure 4.5 shows the preliminary
point-proton radius for 6He using HH and 8He using CC [Bac09b]. The
hyperspherical harmonics over-estimate the point-proton radius of 6He while
the coupled cluster under-estimate the point-proton radius of 8He. However,
larger Hilbert space calculations are needed to confirm it.

In conclusion, both the strong dependence of the 6He and 8He binding

123



4.4. Comparison of the results for 6,8He with theory

energies with Λ and the systematic underbinding of 8He could be explained
by the missing three-nucleon potential. If the two-nucleon potential was
sufficient to describe 6He and 8He, their binding energies should be inde-
pendent of the cut-off (see section 1.2.3). The underbinding of 8He could be
another consequence of the missing three-nucleon interactions in the theory
in analogy to what is observed in GFMC. In fact, GFMC underbinds 8He
by 8.7 MeV [Pie04] when only the two-body AV18 potential is used, but
with the addition of the attractive contribution of the three-body Illinois
potential, the 8He binding energy is only 320 ± 40 keV from the TITAN
value.

4.4.4 Summary

Using three different quantities: the binding energy, the two-neutron separa-
tion energy, and the point-proton radius, various ab-initio methods predic-
tions were compared. Comparing the predictions of these methods against
more than one experimental observable allows us to test the limitations of
the methods. For instance, using the CD-Bonn 2000 potential, the NCSM
correctly predicts the charge radius of both 6He and 8He. However, weak-
nesses are revealed once we compare its predictions for the binding energies
of 6He and 8He with experiment. We show that the inverse is also true for
the INOY potential; it reproduces the binding energies but fails at predict-
ing the point-proton radius. Such comparison questions the description of
halo nuclei using two-body interactions only without explicitly studying the
model dependance.

The comparison of the binding energy predictions with the experiment
also confirmed the need for three-body interactions in systems comprised of
more than two nucleons. This is because unlike the electromagnetic force,
for the strong force the interaction between two particles is different in the
presence of a third particle than when the two particles are isolated (see
section 1.2.1). In section 1.2.3, we showed that calculations using only two-
body potentials cannot correctly predict the binding energies of 4He and 3H.
However, once three-body potentials are included predictions closer to the
experimental values for both nuclei are reached. The missing three-body
potential could explain the systematic underbinding of the 6He and 8He nu-
clei resulting from the NCSM calculation using a CD-Bonn 2000, the NCFC
using the JISP16 potential, the HH and CC using the Vlowk potential and
the GFMC using only the AV18 potential as all these potentials involve only
two-body interactions. Furthermore, as the number of nucleons within the
nucleus increase the effect of these missing three-body interactions increases
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[Pie01a]. This would explain the larger deviations seen in the binding en-
ergies of 8He compared to 6He. Finally, the only method that performed
calculations on 6He and 8He using three-nucleons interactions, the GFMC,
gives the results that are the closest to the experimental binding energies.
In conclusion, we showed that in order to have a stringent test of ab-initio
methods, one needs to test their predictions for more than one observable.

125



Chapter 5

Summary and outlook

Modern nuclear physics is an active field of research pushing the limit of
our understanding of the nucleus towards more extreme systems such as
deformed nuclei [Jan91], super heavy elements [Blo10] and halo nuclei with
the ultimate quest to understand the strong interaction. These studies are
possible due to the recent development of radioactive beam facilities. These
facilities allow the production of quantities of unstable short-lived nuclei
in order to study their properties. With the development of new facilities
world-wide, such as the FRIB in the US and the FAIR project in Europe,
this will extend the production of larger quantities of heavier dripline nuclei.

Halo nuclei are a threshold phenomenon occurring at the verge of the
neutron dripline, where the binding energy of the last few neutrons is mini-
mal. This small neutron separation energy results in the quantum mechan-
ical tunnelling of the valence neutrons forming an extended neutron distri-
bution around a more confined core distribution. Explaining the extreme
properties of these nuclei poses a challenge to theory. However, these nuclei
can be used as test benches for ab-initio methods, which treat nucleons as
effective degrees of freedom. This thesis aimed at providing accurate and
precise experimental data to test ab-initio methods by probing predictions
for the binding energies and charge radius of the halo nuclei 6,8He.

Key to achieving reliable experimental values for the binding energies
and charge radius of 6,8He, is to perform precise and accurate direct mass
measurement of these nuclei. Penning traps are the only mass spectrometer
that can perform direct accurate mass measurement at the desired level of
precision, in the sub-keV range. Hence the measurements were carried-out
with the TITAN Penning trap mass spectrometer, which is coupled to the
ISAC radioactive ion beam facility of TRIUMF. We measured the 6,8He
masses with a precisions of 54 eV for 6He and 106 eV for 8He and found
deviations of these masses with the literature values [Aud03] of 1.7σ for 8He
and 4.0σ for 6He. The considerable increase in precision of these masses
yields a significantly improved value of the charge radius while the more
accurate mass value shifted the charge radius values of both nuclei.

We used the more precise and accurate TITAN masses to calculate the
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point-proton radii, two-neutron separation and binding energies of 6He and
8He. We showed that using these quantities one can test the predictions and
point out potential areas of improvements of various ab-initio models. A key
finding is the inconsistency of the No-Core Shell Model at predicting the cor-
rect point-proton radius while producing unbound nuclei. This unveils the
importance of the asymptotic behaviour of the halo neutron wave function.
We also show the importance of including three-body interactions in the
effective nuclear potential to correctly describe the properties of many-body
system such as 6He and 8He.

We performed a mass measurement on 6Li that solved a 2.3σ discrepancy
between two different Penning trap mass measurements and confirmed the
value from the SMILETRAP group [Nag06]. This measurement shows that
the TITAN experiment can perform 10−9-level mass measurements. Mea-
surements to that level of precision and accuracy are only made possible if
a detailed systematic study of the Penning trap system is performed. This
lead to the detailed systematic study of the Penning trap presented in this
thesis. The studies included compensation of the trapping potential. We
performed this compensation using two different methods in order to pin-
down the combination of correction tube and guard voltage that provide
the optimal compensation of the trapping potential. The resulting shift in
frequency ratio due to the incomplete compensation of the trapping poten-
tial is (∆R/R)inc. = 0.5(5)×10−9 ·∆A. All other known systematic effects
were assigned to be below 1×10−9, except for our conservative estimate
on the error due to the misalignment of the trap with the magnetic field.
This error is found to be (∆R/R)mis. = 4.2×10−9 · ∆A. However, there
are plans to determine experimentally the size of this error. Also, both this
uncertainty and the uncertainty due to the incomplete compensation of the
trapping potential depends linearly with the trapping potential. These esti-
mates are based on the large trapping potential V0 = 36 V used to calculate
them. Therefore, the contribution of these effects to the mass measurement
systematic error can be reduced by using a smaller trapping potential.

In summary, the work presented in this thesis is important for several
reasons. Firstly, we showed that precise and accurate mass measurements
are important for halo nuclei. Until the mass measurement of 8He by the
TITAN experiment, no Penning trap measured the mass of a neutron-halo
nuclei before. The problem residing mainly in their short half-life, typically
low production yields and losses in the RFQ due to their light masses. With
the highest production yields among ISOL facility for halo-nuclei, coupled
with the high transfers efficiency close to 60% for light nuclei using hydrogen
as buffer gas in the RFQ, the TITAN facility is a unique facility to measure
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the masses of the very-short lived halo nuclei. Future halo nuclei mass
measurements plans at TITAN includes the two-neutron halo 14Be. The
current mass value for 14Be [Aud03] is based on two slightly conflicting
measurements [Gil84, Wou88] that differs by 370 ± 210 keV. The resolution
of this conflict through an accurate mass measurement would provide a more
reliable mass for planned charge radii measurement on 14Be [Nor09] and also
cluster-model based description of this halo nuclei [Tar04].

Secondly, precise and accurate mass measurement are critical for the
planned mass measurement of the super-allowed 0+ → 0+ β-emitter 74Rb.
A more accurate mass of this nuclei would help to increase the precision on
the ft-value theoretical corrections and ultimately decrease the uncertainty
on the Vud CKM matrix element. This measurement has to be performed
with a precision and accuracy of 5×10−9. The mass measurement of 6Li at
a precision of 4.2×10−9 shows that the TITAN Penning trap is ready for
such measurement and can perform an accurate mass measurement with a
precision below 5×10−9.

Lastly, we demonstrated that ab-initio methods can be tested by compar-
ing the predictions for binding energy, two-neutron separation energy and
point-proton radius of halo nuclei. Comparisons, for example confirmed the
importance of three-nucleons interactions for systems with a larger number
of nucleons than two. Two of the theoretical approaches presented, the hy-
perspherical harmonics expansion and coupled cluster theory are currently
working on the incorporation of a three-body interactions in their calcula-
tion of the 6He and 8He properties [Bac09b]. It is hoped that in the near
future few-nucleon systems can be well predicted based on first-principle
theoretical approaches, opening the path for nuclear physics theory from a
descriptive to a predictive theory. Moreover, extensions of such approaches
to heavier systems seem possible.
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[Cau06] E. Caurier and P. Navrátil, Phys. Rev. C 73, 021302(R) (2006).

[Cha09] C. Champagne, A Retarding Field Analyser For TITAN, M.Sc. the-
sis, McGill University (2009).

[Cor09] L. Corragio et al., Phys. Rev. C 80, 044311 (2009).

[Dah00] D.A. Dahl, Int. J. Mass. Spectr., 3, 200 (2000).

[Dil06] J. Dilling et al., Int. J. Mass Spectr. 251, 198 (2006).

[Dol03] P. Doleschall et al., Phys. Rev. C 67, 064005 (2003).

[Dom00] M. Dombsky et al., Rev. Sci. Instrum. 71, 978 (2000).

[Dom02] M. Dombsky et al., Nucl. Phys. A, 701, 486c (2002).

[Dra04] G.W.F. Drake, Nucl. Phys. A 737, 25 (2004).

[Epe02] E. Epelbaum et al., Phys. Rev. C 66, 064001 (2002).

[Ero06] T. Eronen et al., Phys. Rev. Lett. 97, 232501 (2006).

[Ero08] T. Eronen et al., Phys. Rev. Lett. 100, 132502 (2008).

[Fri97] J. L. Friar, J. Martorell, and D.W.L. Sprung, Phys. Rev. A 56, 4579
(1997).

[Fro06] M. Froese et al., Hyperfine Interact. 173, 85 (2006).

[Gab09] G. Gabrielse, Phys. Rev. Lett. 102, 172501 (2009).

[Gaz06] D. Gazit et al., Phys. Rev. Lett. 96, 112301 (2006).

[Gil84] R. Gilman et al., Phys. Rev. C 29, 958 (1984).

[Gla58] R.J. Glauber, Lecture in theoretical physics (New York, Interscience
Publishers, 1958).

130



Bibliography

[Gor09] S. Goriely, N. Chamel and J.M. Pearson, Phys. Rev. Lett. 102,
152503 (2009).

[Gos95] P.K. Ghosh, Ion traps, Oxford University Press (1995).

[Gue06] C. Guénaut et al., Phys. Rev. C 75, 044303 (2007).

[Hag06] G. Hagen, M. Hjorth-Jensen and N. Michel, Phys. Rev. C 73,
064307 (2006).

[Hag07a] G. Hagen et al., Phys. Lett. B 656, 169 (2007).

[Hag07b] G. Hagen et al., Phys. Rev. C 76, 034302 (2007).

[Hak08] J. Hakala et al., Phys. Rev. Lett. 101, 052502 (2008).

[Han87] P.G. Hansen and B. Jonson, Europhys. Lett., 4 (4), 409 (1987).

[Har05] J.C. Hardy and I.S. Towner, Phys. Rev. C 71, 055501 (2005).

[Har09] J.C. Hardy and I.S. Towner, Phys. Rev. C 79, 055502 (2009).

[Hax49] O. Haxel, Phys. Rev. 75, 1766 (1949).

[Hea01] T.P. Heavner, S.R. Jefferts, G.H. Dunn, Phys. Rev. A 64, 062504
(2001).

[Jan91] R.V.F. Janssens et al., Annu. Rev. Nucl. Part. Sci. 41, 321 (1991).

[Jen04] A.S. Jensen et al., Rev. Mod. Phys. 76, 215 (2004).

[Jon04] B. Jonson, Phys. Rep. 389, 1 (2004).
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Appendix A

Ion beam capture
optimization

The proper capturing of the ion bunches in the Penning trap is critical to
have an optimal cyclotron frequency determination. Ideally, once captured,
the ions bunches should have minimal kinetic energy. Any residual kinetic
energy results in the ion oscillating axially in the trap. Large axial oscillation
amplitudes causes the ions to venture in region of the trapping potential
that have are inevitably non-harmonic, which results in a change in the
ion’s cyclotron frequency (see section 3.2.3 and 3.3 for more details). Also,
if the initial energy of the ions is comparable to their energy gain at the end
of the magnetron to reduced cyclotron conversion phase, this results in a
reduction of the time-of-flight effect. This effect is shown in figure A.1 for
7Li+ ions. This figure shows the effect of the closing time of the trap on the
time-of-flight resonance spectra. The data in red correspond to an optimal
capturing, while the blue data correspond to a capturing where the trap is
closed ∆tcap = 1 µs too soon. The effect of closing the trap not at the right
time is obvious from figure A.1. Firstly, the blue curve in figure A.1 (a)
shows that more ions arrives with short time-of-flight that are comparable
to on-resonance ions (shown by a “bump” in the red curve at a time-of-flight
of 16 µs). This results in a reduction of the amplitude of the time-of-flight
resonance as shown by the blue curve in figure A.1 (b). This figure also shows
that this can cause a change in the cyclotron frequency. In this section we
explain how the ion capturing in the Penning trap is optimized.

The ion bunch capturing in the Penning trap is optimized by adjusting
the closing time of the trap and ion energy upon capture. This energy
depends on several factors. Firstly, the transport energy E of the beam,
which depends on the potential difference between the RFQ high voltage
potential and the RFQ pulse drift tube potential. Secondly, the potentials
applied on the drift tube prior to the Penning trap. The role of this drift
tube is to remove most of the ions energy without perturbing them. This
is done by applying a potential VPLT (+) on the drift tube that is about 65
V below the beam energy and once the ions reach the drift tube centre, we
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Appendix A. Ion beam capture optimization
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Figure A.1: a) 7Li time-of-flight distribution for an ideal capture timing
∆tcap = 0 µs and when the ions are captured 1 µs too soon. b) Corresponding
TOF spectra. Note the shift in frequency and the reduction in the TOF
resonance amplitude.

pulse its potential down below ground potential. Then, the ion beam energy
leaving the drift tube is simply E - VPLT (+). In order to have the ions stop
once they reach the trap centre, we adjust the low voltage of the pulse drift
tube VPLT (−) until VPLT (−) ≈ E − VPLT (+).

The effect of the trap closing time tcap and the pulse drift tube low po-
tential VPLT (−) on the axial oscillations of the ions in the trap has been sim-
ulated using SIMION [Dah00]. For this simulation, we used singly charged
ions with mass number A = 6, a beam energy of E = 1993 eV and a drift
tube high potential VPLT (+) = 1936 V. Figure A.2 is a contour plot that
shows the results of this simulation. The contours represent different size of
axial oscillations amplitude in mm. Figure A.2 shows that the size of the
axial oscillation amplitudes is very sensitive with the capture timing when
VPLT (−) is at its optimal value. At this point, the amplitude of the bunches
grows with a rate of about 1 mm/100 ns. The amplitude of the axial oscil-
lations are also sensitive to VPLT (−), considering that a change in the beam
energy of 5 eV is enough to change the amplitude by 4 mm. This makes the
ion capturing in the Penning trap particularly sensitive on the ion energy.

The optimal injection setting in the trap are found using two different
methods. In the first method we adjust the closing time of the trap and the
pulse drift tube low potential in order to minimize the width of the time-of-
flight distributions. If no RF excitation of the ions is performed, they should
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Figure A.2: Variation of the axial amplitudes (shown in the boxes, in mm)
of the ions in the Penning trap as a function of the capture timing and the
low level of the pulse drift tube.
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Figure A.3: a) TOF distribution width as a function of the capture timing
for various MPET PTL negative voltages VPLT (−) (lines are guide to the
eye). b) Corresponding number of counts recorded on the MPC. See text
for more details.
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Figure A.4: Variation of the mean time-of-flight as a function of the extrac-
tion time of the ions from the Penning trap for 39K. ∆tcap = 0 is the optimal
capture timing.

arrive on the detector with similar time. The minimal spread in their arrival
time should be dictated by the initial energy spread and spacial extent of the
bunch. When the ions still have some kinetic energy once captured, their
spread in time-of-flight between their extraction and arrival to the detector
is larger as evidenced by the blue curve in figure A.1 (a). Therefore, one can
optimize the capturing by finding the trap closing time tcap and pulse drift
tube low potential VPLT (−) that minimizes the time-of-flight width.

Figure A.3 (a) shows the time-of-flight width σ as a function of the
capture timing for three different pulse drift tube low potential VPLT (−). The
optimal capture occurs for VPLT (−) = -136 V and tcap = 1.5 µs, where the
width σ is minimal. Figure A.3 (b) shows that this timing also corresponds
to where number of detected ions is maximal. For VPLT (−) = -142 V, there
is generally less ions getting in the trap and this is because the pulse drift
tube low potential is too small, causing the beam to have too little energy
to reach the trap centre. At the opposite, more counts are seen for VPLT (−)

= -126 V, which corresponds to a more energetic beam injected into the
Penning trap than the optimal VPLT (−) = -136 V. This might be because
for the optimal setting, the ions with lower kinetic energy cannot make it
into the trap.
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Appendix A. Ion beam capture optimization

The second method involves a more direct measurement of the axial
oscillations amplitude. In this method, the mean time-of-flight of the ion
bunch leaving the trap is plot as a function of a delay in the extraction
time from the Penning trap. By changing this delay, the ions bunches leaves
the Penning trap when they are in different position in the trap resulting
in a sinusoidal change in the mean TOF with the extraction time. As we
discussed previously, when the ions are captured with minimal energy in the
centre of the trap, their axial oscillation amplitude is minimal, which results
in a minimal variation in the mean TOF.

An example of these sinusoidal fluctuations in shown in figure A.4 for
two different capture timing for 39K. This figure shows that for a proper
capture timing (∆tcap = 0), the change in the amplitude is minimal as
expected. For an improper capture timing, the amplitude of the oscillations
are significantly larger and the centroid of these oscillations is shifted towards
smaller time-of-flight as a result of the larger kinetic energy of the ion in
the Penning trap. In conclusion, the ion beam captured in the Penning trap
can be optimized using two different techniques in order to ensure that the
ions have minimal axial oscillations amplitude in the trap.
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