ISAC Facility Report

January 23, 2015

• ISAC performance
• Beam development activities
• Backlog and current proposals

Reiner Kruecken | Science Division Head | TRIUMF
Professor of Physics | University of British Columbia
ISAC performance
Isotope Landscape at ISAC

Yield Chart of Nuclides

- RIB Intensity Measurement at the ISAC Yield Station:
 - α, β, γ-decay (HPGe, Plastic-Scintillator, Si)
 - Beam current (Faraday Cup, Channeltron)

- Light target elements: spallation, fragmentation \rightarrow neutron-deficient
- Uranium: fission \rightarrow neutron-rich

January 23, 2015
ISAC Facility Report
Update on TRILIS beams

- T RILIS isotopes on-line: status is 12/2014
- tested TiSa schemes (incomplete): status is 10/2014
- TiSa network: Mainz, TRIUMF, ORNL, JYFL, GANIL, ISOLDE
- TiSa laser ionization scheme on paper (theory)

Orange denotes elements ready to go online

January 23, 2015

ISAC Facility Report
TRILIS beam delivery

• TRILIS ITW laser beam transport system upgraded

• TRILIS beams (2014):
 • Be, Sn, Ca, Sr, Ac, Al, Mg, Ga, Ag, At
 • Ca: higher efficiency laser scheme - more than x10 yield increase from lasers
 • Ag: successful spin-isomer separation with lasers

• beam development:
 • Ti, Y, Sb, Tb, Yb: ready for online test & yield with proper target ion source combination
3333 hours RIB delivery
3143 hours experiment run time
168 hours development
<table>
<thead>
<tr>
<th>Facility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP Ta LIS/SIS TM4 ITW</td>
<td>First run of LIS after laser transport upgrade to ITW. ¹²Be to IRIS. LIS development for Sn.</td>
</tr>
<tr>
<td>HP TiC LIS/SIS TM3 ITE</td>
<td>First charge bred beam to DRAGON ³⁸K. New laser scheme for Ca: increase by factor 100 compared to Ta target and old laser scheme.</td>
</tr>
<tr>
<td>LP UCx LIS/SIS TM1 ITW</td>
<td>Charge bred ⁹⁵/⁹⁶Sr beams to TIGRESS, yields about 1-2 orders of magnitude higher than in previous runs.</td>
</tr>
<tr>
<td>HP SiC FEBIAD TM3 ITE</td>
<td>⁸He to new TAMU chamber. Problems with high voltage stability of target module.</td>
</tr>
<tr>
<td>LP Ta LIS/SIS TM1 ITW</td>
<td>¹¹Be to TIGRESS, ⁸Li to BMNR.</td>
</tr>
</tbody>
</table>
ISAC targets 2014 (cont.)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Description</th>
</tr>
</thead>
</table>
| LP UCx LIS/SIS TM4 ITE | ^{31}Na to **OSAKA**, exceptionally high yield Mg isotopes to TITAN, Fr isotopes to collinear spectroscopy
^{213}Fr implantation for nuclear medicine |
| LP ZrC LIS/SIS TM1 ITW | **GRIFFIN** commissioning with ^{26}Na
No LIS beams (Ga) possible due to blockage of extraction electrode |
| HP Ta LIS/SIS TM4 ITE | ^8Li to BMNR, ^{21}Na to GPS3 |
| LP ThO LIS/SIS TM1 ITW | Test target |
| LP UCx LIS/SIS TM4 ITE | ^{32}Na, $^{46,47}\text{K}$ to **GRIFFIN**, ^{211}Fr to Fr trap
Stable Mg to collinear spectroscopy
Broken target container after a few days of running reduced yields by factor 100 |
Target problems (and recovery)

• LP ZrC/TRILIS failure
 • cancelled 3 experiments
 • S1518 - 11 shifts of 62Ga (GRiFFIN)
 • S1332 - 8 shifts of 62Ga (Laser Spectroscopy)
 • S1326 - 2 shifts of 76Sr (Laser Spectroscopy)
 • delivered 39 shifts to βNMR from HPTa/SIS

• LP UCx/TRILIS broken target container
 • dramatically lower beam intensities:
 • GRIFFIN’s S1507
 • received only 5/11 shifts of 32Na
 • delivered $^{46-47}$K instead
 • Francium S1218 ran for 1 day but was cut short by internal problem, demonstrated transfer from collection to science trap
 • Laser spectroscopy S1329’s of exotic Mg isotopes not feasible but methodological developments carried out with 26Mg

January 23, 2015
ISAC Facility Report
Beam Development Activities
• 240 composite ThO$_2$/Nb foils
• 12.0 g/cm2 ThO$_2$ / 5.2 g/cm2 Nb total thickness
• Max. Beam current 10 µA p+
• Total beam charge on target 2053 µAh p+
• Max. Core Temperature 1800 ºC
ThO target - Alkali metal yields

Yields similar to regular UCx target
ThO target
Astatine – Isotope shift and HFS

SES isotope shift of At

I=9/2

I=1

I=9/2

SES (cm\(^{-1}\))

January 23, 2015

ISAC Facility Report
• High yields for ^{223}Ra and ^{224}Ra
• Actinium isotopes are not released from the target
• half-life of ^{230}Ra measured with unprecedented accuracy.
Rotating a proton beam of reduced width (and smaller tails) on the ISAC high power targets would contribute to a more homogeneous temperature distribution across the target and enable operating at higher average temp.

- Expected to allow beam current increase up to 50% of present levels*
- Increased temperature => enhance diffusion and effusion of the isotopes
- Higher currents will boost production

=> both will contribute to higher yields of radioactive ion beams.

*TRI-DN-08-19 `Rotating proton beam simulations for optimization of the ISAC target temperatures’ – P. Jones, M. Trinczek, R. Laxdal
ISAC – AC Raster Magnet

- Magnets and power supplies installed at ITE
- Tested locally
- Beam Profile Monitor installed
- Tests with beam done December 2014
 data analysis ongoing
Implementation plan

- Install controls for magnets in shut down

- Proposed targets for development: (~1 week each)

 1. Low power Ta with surface source D (or egg shaped) foils can be used for non rotating beam
 - Develop parameters for beam rotation
 - Test diagnostics
 - Implement and test interlocks
 - Measure yields

 2. Ta or SiC target annular shaped foils only useful for rotating beam
 - Optimize parameters
 - Measure yields
Target ion source development for 2015 (proposal)

1. Rotating beam development
2. Graphite target container/insert for UC
 • Off line tests to be done in January, February
3. Modified center block for low power target containers
 • Can be combined with 2nd target for rotating beam
Modified Centre Block for low power targets

continued dev.: temperature modeling for target ion sources

thermal simulations for standard target (2.5kW internal heating)

- ISAC standard with surface ion source (235A heating)
 - 1320 °C, 1270 °C
 - J. Lassen (2014)

- ISAC new: with short, heated transfer tube (300 A heating) for IG-LIS
 - 1290 °C, 1114 °C
 - 1505 °C, 1540 °C

under development:
- ISAC new with surface ion source
 - better release for short lived isotopes
1. Rotating beam development
2. Graphite target container/insert for UC
 • Off line tests to be done in January, February
3. Modified center block for low power target containers
 • Can be combined with 2nd target for rotating beam
4. (IG)LIS Lanthanides
 • High power Ta target
 • Other elements depending on target schedule
5. New UC\textsubscript{x} processing technique
 • Shorter processing time
6. High temperature W target design
 • For short lived isotopes
7. FEBIAD beams
 • requires TM2
 • Cold transfer line (depending on failure analysis review)
8. n – converter target
 • Concept to be reviewed
 • requires contributions from ISOLDE collaborators
Backlog and current proposals
ISAC target modules

January 2015

<table>
<thead>
<tr>
<th>TM</th>
<th>HV</th>
<th>Sources</th>
<th>availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24 kV</td>
<td>SIS/LP</td>
<td>ready</td>
</tr>
<tr>
<td>2</td>
<td>~57 kV</td>
<td>FEBIAD/SIS/HP</td>
<td>End of June 2015</td>
</tr>
<tr>
<td>3</td>
<td>15 kV</td>
<td>FEBIAD/SIS/HP</td>
<td>Not ready (broken steerers, unstable HV)</td>
</tr>
<tr>
<td>4</td>
<td>>50 kV</td>
<td>SIS/IGLIS/HP</td>
<td>ready</td>
</tr>
</tbody>
</table>
Backlog by Target / Ion Source combination

<table>
<thead>
<tr>
<th>High Target</th>
<th>RILIS</th>
<th>SIS</th>
<th>IGLIS</th>
<th>FEBIAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NiO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>SiC</td>
<td>48</td>
<td>0</td>
<td>7</td>
<td>58</td>
</tr>
<tr>
<td>Ta</td>
<td>4</td>
<td>98</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>TiC</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UC</td>
<td>27</td>
<td>46</td>
<td>34</td>
<td>10</td>
</tr>
<tr>
<td>ZrC</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medium Target</th>
<th>RILIS</th>
<th>SIS</th>
<th>IGLIS</th>
<th>FEBIAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NiO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>SiC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ta</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TiC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>UC</td>
<td>0</td>
<td>8</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>ZrC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
</tbody>
</table>

- **Ta SIS/RILIS:** 106 shifts (8 weeks + bNMR) ➔ 2-3 targets
- **UC SIS/RILIS:** 106 shifts (8 weeks) ➔ 2 targets
- **UC IGLIS:** 45 shifts (3 weeks) ➔ 1 target
- **ZrC SIS/TRILIS:** 23 shifts (incl. Nb) + bNMR ➔ 1 target
- **SiC SIS/RILIS:**
 - **28Mg TIGRESS needs 56kV ➔ TM 2**
 - **Al implantation possible w/ TM4 (12 shifts approved, under review)**
 - **Additional shifts being requested (26Al implantation, 20Mg IRIS)**
- **SiC FEBIAD:**
 - needs optimal FEBIAD performance ➔ TM2 (at the earliest in Fall Schedule)
Operational plan:
8 months operation per year (240 days, 8 targets, 5 days ovhd/tgt)
→ 176 days RIB delivery (4224 hours)
→ 35 days Materials Science (20%)
→ 15-20% beam development
→ ~ 105-110 days RIBs for SAP

Dec 2014:
404 RIB shifts with H priority (1.9 yrs)
89 RIB shifts with M priority (0.5 yrs)

ISAC-RIB shifts quota: 105 shifts

RIB oversubscription factor 1.5

<table>
<thead>
<tr>
<th></th>
<th>ISAC-RIB</th>
<th>ISAC-SIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Reports/Addenda</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>New Proposals</td>
<td>120</td>
<td>58</td>
</tr>
<tr>
<td>Sum</td>
<td>148</td>
<td>58</td>
</tr>
</tbody>
</table>
Thank you!
Merci