Hyperfine anomaly measurements in Francium

Robert Collister
FrPNC Collaboration

December 5, 2012
Overview

- Francium trapping facility
- Francium trapping November 2012
- Hyperfine anomaly
- Isotope Shift
The facility

- Francium trapping facility in ISAC I located beneath TITAN platform
- Magneto-optical trap to cool & collect atoms for further experiments
The facility

- Upper trap chamber, commissioned September 2012
The facility

- Upper trap (before optics)

![Image of laboratory equipment with annotations]

- Glass cell
- Yttrium assembly
- Faraday cup + alpha det.
The facility

- Upper trap (after optics)
Francium trapping

- Trapped isotopes: $^{206}\text{Fr}, ^{207}\text{Fr}, ^{209}\text{Fr}, ^{213}\text{Fr}$

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Standard Deviation</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{206}Fr</td>
<td>16 s</td>
<td>$\sigma \approx 84.00%$, $\epsilon \approx 16.00%$</td>
</tr>
<tr>
<td>^{207}Fr</td>
<td>14.8 s</td>
<td>$\sigma : 95.00%$, $\epsilon : 5.00%$</td>
</tr>
<tr>
<td>^{208}Fr</td>
<td>59.1 s</td>
<td>$\sigma : 89.00%$, $\epsilon : 11.00%$</td>
</tr>
<tr>
<td>^{209}Fr</td>
<td>50.5 s</td>
<td>$\sigma : 89.00%$, $\epsilon : 11.00%$</td>
</tr>
<tr>
<td>^{210}Fr</td>
<td>3.18 M</td>
<td>$\sigma : 71.00%$, $\epsilon : 29.00%$</td>
</tr>
<tr>
<td>^{211}Fr</td>
<td>3.10 M</td>
<td>$\sigma : 87.00%$, $\epsilon : 13.00%$</td>
</tr>
<tr>
<td>^{212}Fr</td>
<td>20.0 M</td>
<td>$\sigma : 57.00%$, $\epsilon : 43.00%$</td>
</tr>
<tr>
<td>^{213}Fr</td>
<td>34.82 s</td>
<td>$\sigma : 99.44%$, $\epsilon : 0.56%$</td>
</tr>
</tbody>
</table>

- Pulsed trap, cycle based on Y heating
Hyperfine anomaly

- Bohr-Weisskopf effect shifts atomic energy levels due to nuclear magnetization distribution
- Probe transition to $P_{1/2}$ level (no electric quadrupole contribution)

 - isotopes ^{208}Fr to ^{212}Fr
 - ^{213}Fr neutron shell closure
 - ^{207}Fr neutron deficient, away from single-particle model?

- Will contribute to better understanding of neutron radius of francium isotopes to be used for eventual parity non-conservation measurements
Hyperfine anomaly

- Trap and repump francium on $7P_{3/2}$ transition
- Probe laser set close to midpoint of hyperfine $7P_{1/2}$ states
- Sidebands on laser through fiber modulator at set frequency
- Sideband frequency swept quickly, reproducibly
Hyperfine anomaly

- 10 ms scans cover \(\approx 140 \) MHz
- Peak separation = 2 \times probe detuning
- Sum of peak frequencies = hyperfine splitting

- Preliminary results
7S\textsubscript{1/2} to 7P\textsubscript{1/2} isotope shift

- Isotope shift caused by change in charge radius (mass difference small for heavy nuclei)

- Relative measurements made with respect to \(^{209}\text{Fr}\)
- Kept laser locked from HFA measurement, change RF sideband frequency

- Trap light chopped \(~10:1\) on/off
- Detailed comparison with known 7S\textsubscript{1/2} to 7P\textsubscript{3/2} (Coc et al. \textit{PLB}, '85) may give info on atomic wavefunction overlap with nucleus
Conclusion and Outlook

▶ In conclusion:
 ▶ ^{206}Fr, ^{207}Fr, ^{213}Fr splittings measured for $7P_{1/2}$
 ▶ Isotope shifts for same

▶ Next:
 ▶ More analysis: systematics, Rb measurements
 ▶ more ^{206}Fr, lighter isotopes, possibly ^{221}Fr
 ▶ Working towards parity non-conservation measurement
Acknowledgements

The FrPNC collaboration:
S. Aubin1, J.A. Behr2, R. Collister3, E. Gomez4, G. Gwinner3, L. A. Orozco5, M.R. Pearson2, M. Tandecki2,3, J. Zhang5

1College of William and Mary, 2TRIUMF, 3University of Manitoba, 4Universidad Autónoma de San Luis Potosí, 5University of Maryland

Work supported by TRIUMF, NRC, NSERC of Canada, NSF and DOE of USA and CONACYT of Mexico.

Many thanks to support staff at TRIUMF.