S1195: Resonances in 19Ne with relevance to the astrophysically important 18F(p,α)15O reaction

Nuclear astrophysics http://www.ph.ed.ac.uk/nuclear/
Dark Matter http://www.ph.ed.ac.uk/nuclear/darkmatter/
Motivation

- Classical Novae
 - accretion of H on CO or ONe WD
- Long standing aim of astronomers...
 - to observe gamma ray emission
 - use that to constrain models
- Largest NP uncertainty: $^{18}\text{F}(p,\alpha)^{15}\text{O}$

- E996*: 665 - 1600 keV
 - May 2007, 22 hrs 4×10^4 $^{18}\text{F}^{9+}$ pps
- E996: 665 keV and below
 - May 2008
- S1195: 665 - 2200 keV
 - May 2009 $^{18}\text{F}^{9+}$
E996’ results
Published 14 May 2009
Science goals updated

- In our 2007 work we do NOT see a proposed astrophysically important 1/2+ state at 1.49 MeV

- Recent publication by Dalouzy et al., using $^1\text{H}(^{19}\text{Ne},p)^{19}\text{Ne}^*(p)^{18}\text{F}$ does see some evidence for the state

Can the results be consistent?
Equipment we’re using

TUDA (…and TUDA II)
May 2007 data

Energy Linearised Time of Flight

$^{16}\text{F}(p,\alpha)^{12}\text{C}$

$^{16}\text{F}(p,\beta)^{18}\text{F}$

$^{12}\text{C}(^{18}\text{F},^{12}\text{C})$

$^{3}\text{H}(^{18}\text{F},^{4}\text{He})$

$^{18}\text{F}(\beta)$

$^{12}\text{C}(^{18}\text{F},^{12}\text{C})$

$^{3}\text{H}(^{18}\text{F},^{4}\text{He})$

Fusion-Evaporation

α contamination in the chamber

Energy

Differential Cross Section (mb/sr)
Calibration reactions

- $^{18}\text{O}(p,p)$ & (p,a)
- Pretty much exactly as hoped for/expected:
May 2009 data

LEDA

~5° lab

$^{18}\text{F}^{9+}$ single strip

S^2

~14° lab

$^{18}\text{F}^{9+}$ single strip
Intensities delivered

Typically 1.2×10^6 18F at yield station

~5x104 pps 18F$^9+$ at TUDA
2-4x103 pps 18Ne at TUDA

18Ne yield similar to 2008.
18F down by factor of >10

18Ne unreactive vs 18F
highly reactive
...and the vacuum is poorer?

- Much larger fraction of 18Ne.
- Beta end points
 - 18F: 1.6 MeV
 - 18Ne: 4.45 MeV
- Betas are contaminating our spectra more than previously.
Beam contamination

E996 May/June 2008
M=18, 4+
Photo diode with thin Al foil
$^{18}\text{Ne}(b^+)^{18}\text{F}^*$

$\rightarrow 1042 \text{ keV gamma}$
Last night...

- Ran on M=18, 10+, to get a 18Ne data set
- Appear to have seen contaminant, close A/Q (slightly lower) and M~25-30
- 27P?
 - Produced through 28Si(p,2n)27P
 - (27P - 27Al$)^{3+}$ from molecules source (equivalent to M=18 Q=1+)
 - Dissociated by stripper
- Charge state 15 after second stripper
- A/Q is right for accelerator (equivalent to 18/10)
Comparing to S1195 proposal...

These new data would provide...

- Complete coverage of high energy region for new resonance searches.
 Maybe

- A factor of 10 increased statistics over previous work (assumes 25% transmission and FEBIAD performance as of May 2008).
 Approx equivalent to E996’

- Multiple 'sweeps' over the 665 keV resonance, exploring the effect of energy resolution.
 Not attempted

Analysis is going to be tough, but there is hope
Thank you