IRIS Experiments S1396 and S1203

Alisher Sanetullaev

St. Mary’s University/TRIUMF
ISAC Science Forum
Auditorium, TRIUMF

November 2013, 2013
Outline

- Motivation
- Overview of IRIS Facility
- Experiment S1396
- Experiment S1203
- Summary
Motivation for S1396 and S1203 Experiments

S1396:
- Study of effects of three-nucleon force in elastic scattering through a first direct comparison to ab-initio reaction cross sections of the $^{10}\text{C}(p,p)^{10}\text{C}$ reaction with no core shell model wave-functions

S1203:
- Search for resonance in ^{12}Li using the $^{11}\text{Li}(d,p)^{12}\text{Li}$ reaction
- Search for resonance in ^{11}Li using the $^{11}\text{Li}(d,d')^{11}\text{Li}$ reaction
- Search for resonance in ^{10}Li using the $^{11}\text{Li}(d,t)^{10}\text{Li}$ reaction
- The selection condition of this reaction is expected to provide clear evidence on p-wave resonance in ^{12}Li
- There is a possibility of observing d-wave resonance as well
Overview of the Facility

- IRIS is fully operational
- The setup can work with solid H_2 as well as solid D_2 target
The low pressure Ionization Chamber (IC) is used for identifying beam contamination (beam isobars). Beam particle energy loss is measured event-by-event. The IC is placed upstream of the reaction vacuum chamber. The IC is filled with isobutane at 19.5 Torr. Beam particle energy loss is read out by 16 anodes, grouped in 4, 8 and 16.
Overview of the Facility: Solid Hydrogen Target

- 30-300 μm solid hydrogen target at 4 K, with 6 mm diameter
- Placed inside the Target and Reaction Vacuum chamber in $\sim 1 \times 10^{-7}$ Torr vacuum
- Hydrogen gas is sprayed and condensed onto 5 μm Ag foil at 4 K through a diffuser
- Heat shield used for keeping the temperature low
Overview of the Facility: Detectors

YY1 Detectors

- Measure the energy and scattering angle of the target-like light particle (e.g. p,d,t)

CsI(Tl) detectors

- Stop and measure the remaining energy of the target-like light particle (e.g. p,d,t) that punches through YY1

S3 Detectors

- Measure the energy loss and scattering angle of the beam-like heavy particle (E.g. ^{10}C, ^{11}Li)
Experiment S1396

- 6 MeV/u 20Ne pilot beam
- 6 MeV/u 10C beam
- 50-100 μm Solid H$_2$ target
- p(10C,p)10C elastic scattering
- 10C stops in the ΔE S3
- 10B contaminant identified on an event-by-event basis
- H-target thickness determination (elastic scattering)
Beam contaminant Identification in S1396

- 10B contaminant present in 10C beam
- Contaminant to 10C ratio was monitored in run-by-run basis
- The 10B/10C ratio varied from \sim2 to \sim6
- IC served it’s real purpose in S1396
Changing target thickness can be taken care of during analysis.

Target thickness was constant at the beginning and end of experiment.

For fresh target, the temperature has to go above ~ 220 K in the warm up process.
Additional target thickness measurement using downstream SSB

- 500 μm silicon surface barrier (SSB) detector
- Located in the monitor box, can be inserted into the beam path
- Beam stops in the SSB
- H_2 thickness can be determined comparing energies
Experiment S1203

- 5.5 MeV/u 22Ne pilot beam
- 5.5 MeV/u 11Li beam
- 100 μm Solid D$_2$ target
- Reactions
 - d(11Li,p)12Li
 - d(11Li,d)11Li elastic scattering
- H-target thickness determination (elastic scattering)
- Data with Ag backing foil only (no hydrogen)
Hydrogen target thickness determination in S1203

- Target thickness was increased during the experiment.
- Deuterium target thickness was constant throughout the experiment.
- For fresh target, the temperature has to go above ~220 K in the warm up process.
Issues

- Energy shift of ~ 200 keV between runs 2013-2017
- Operators were trying to increase the beam rate
- S3 E energy decreased, while S3 ΔE energy increased by corresponding amount (gain change unlikely)
Experiment S1396: Beam contaminant ^{10}B was identified with Ionization Chamber

- H$_2$ target performed reasonably well
- Total beam rate 10,000-20,000/sec (including ^{10}B contaminant)

Experiment S1203: Good beam of 3000-3500/sec ^{11}Li throughout the experiment

- D$_2$ target was stable throughout the experiment
- Good PID of Li and other isotopes in S3
- The beam times were successfull
Acknowledgements

Collaborators:

Many thanks to:
Detector group (A. Miller, G. Sheffer, R. Openshaw)
DAQ group (P.A. Amaudruz, K. Olchanski, T. Lindner)
ISAC Facility support (C. Morton, M. Marchetto, F. Ames and all ISAC operators)
Beamline (D. Preddy, B. Gasbarri, J. McKinnon)
Vacuum group (D. Yosifov, E. DallaValle, D. Wright)
Mechanical Design (C. Holmberg)
Electrical Services (F. Mammarella, R. Creanga)
and Machine shop staff