ARIEL II: Completion to Science

Lia Merminga | Accelerator Division Head,
ARIEL Co-Leader | TRIUMF

International Peer Review of TRIUMF
November 13-15, 2013
ARIEL will be TRIUMF's flagship Rare Isotope Beam facility for the production of isotopes for physics and medicine. ARIEL uses proton-induced spallation and electron-driven photo-fission of ISOL targets for the production of short-lived, rare isotopes that are delivered to multiple experiments simultaneously at the ISAC facility.
Completing and operating ARIEL is absolutely central to realizing laboratory vision.

ARIEL substantially expands RIB program:
- three simultaneous beams
 - increased number of hours/yr delivered
 - increased beam dev capabilities
 - enables sensitive and long beam time experiments
- new isotope species:
 - “clean” n–rich
 - proton-rich

Implementation:
- Complementary electron linac driver for photo-fission
- New target stations and front end
- New proton beamline
Time line (funding)

- Funded now: **ARIEL I** (to be complete Sept 2014):
 - Electron beam at 30 MeV, 100 kW from SRF linac
 - Civil construction to encompass objectives of both ARIEL I&II

- Secured funding in this 5YP (2010-2015) to initiate:
 - ARIEL Electron Target Station
 - ARIEL Front-end for ISAC

VECC MoU Add-3 CANREB
Next five-year plan – **ARIEL II** (2015-2020):

- Completion of the ARIEL project will proceed in **five phases**
- Each phase enables:
 - new scientific capabilities
 - technical developments (e.g. 500 kW e-linac and photo-converter, remote handling) towards the final ARIEL configuration
ARIEL II Phases
Phase 1: Li-8 for β-NMR

Goals:

- Photo-production of Li-8 in a Be-9 target using bremsstrahlung photons produced by stopping 100 kW electron beam in a solid metal target, and delivered to β-NMR.
- Construction of a new Control Centre

Requires:

- ARIEL e-linac 30 MeV 100 kW
- West Target station (non-actinides) 4.4M
- Pre-separator & beamline to β-NMR 1.8M
- Control Centre 2M

=> TOTAL: 8.2M
Phase 1 will be done in collaboration with VECC - Kolkata:

- In August 2013 MoU Add-3 was signed => project began
- Scope ($10.4M) includes two ARIEL target modules, tested in ARIEL, and front-end beamlines
Phase 2: Purified accelerated high mass RIBs

Goals:
- Transport ISAC RIBs with A>29 to the ARIEL Mass Separator Room, purify, charge breed and deliver them to the ISAC medium and high energy experimental areas.
- A collection station for medical isotopes will be implemented.

CFI-funded CANREB project (scope $4.5M) provides the essential components required for the ARIEL front-end: EBIS, HRS, RFQ cooler.

Requires:
- Beamlines $1.6M
Phase 3: Photo-fission for r-process studies

Goals:
- Production and delivery of neutron-rich fission fragments by implementing actinide targets in conjunction with the solid photo-converter.
- Two simultaneous electron-produced RIBs delivered to users.

Requires:
- West Target station w/ actinides $8M
- East Target station $3.4M
- 2nd pre-separator and beamline $1.1M
- MRS $0.7M

=> TOTAL: $13.2M

Milestones:
- Three independent RIB beams to ISAC
- Two simultaneous electron-produced RIBs to users
Phase 4: Actinide Production for Fundamental Symmetry Tests

Goals:
- Implement new proton beamline (BL4N) from cyclotron, delivering up to 100 μA at 500 MeV of proton beam to the West Target Station.
- Isotope production from e-linac shifts to East Target Station only.

Requires:
- Proton beamline $4.3M
Phase 5: Full power e-linac to reach most exotic neutron rich nuclei

Goals:
- Increase the energy and power of the e-linac beam to full design specification 50 MeV, 500kW, producing up to 10^{14} fissions per second.

Requires:
- e-Linac completion 5.1M
ARIEL II Project: WBS & Budget

ARIEL II

- **Project Management Office**
 - EH&S
 - Finance
 - Communications

- **E-Linac** $5.1M
- **BL4N** $4.3M
- **Target Stations & Photo-converter** $15.8M
- **Separator & Front End** $5.2M
- **Control Center** $2M

*CANREB MoU3

*VECC MoU3

CANREB and VECC MoU Addendum 3 funding secured $32.4M CFI application submission June 27, 2014, decision March 2015
ARIEL II Schedule – Science enabled

<table>
<thead>
<tr>
<th>PHASE</th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
<th>SCIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Molecular and Material Science</td>
</tr>
<tr>
<td>b- NMR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Purified high-mass ISAC-II beams</td>
</tr>
<tr>
<td>CANREB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r-process full multi-user</td>
</tr>
<tr>
<td>Photo fission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two ARIEL beams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fundamental symmetries</td>
</tr>
<tr>
<td>Proton beamline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extend r-process reach</td>
</tr>
<tr>
<td>Full e-linac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARIEL 10 YEAR PLAN

<table>
<thead>
<tr>
<th>Year</th>
<th>Isotopes from Actinides</th>
<th>Nuclear Astrophysics Isotopes for Medicine</th>
<th>Fundamental Symmetries</th>
<th>Nuclear Structure Isotopes for Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jens Dilling
Thank you!
Merci