Actinide Target Station & 238U Photofission Yield

Pierre Bricault
SEEC, 25-26 March 2008
Next 5-YP

Three RIB to users
- One RIB from actual ISAC
- Proton Beam line (< 200 μA; 475 MeV)
- Electron Beam producing photofission (10 mA; 50 MeV)
More RIB to Users

New Target Station Compatible with Actinide Target Material

New High Intensity Beam Dump: at least 200 μA

We are proposing a solution to deliver Three RIB to Users

One RIB from actual ISAC

Proton Beam line ($< 200 \mu$A; 475 MeV)

Electron Beam producing photofission (10 mA; 50 MeV)

First of all, new target stations has to be compatible with actinide target.
The target station is an assembly of 5 modules, entrance, target and beam dump, plus two exit modules containing the heavy ion optics elements for beam preparation to the mass separator.

Advantages of the ISAC target station concept

1. The modular approach permits use of high intensity (up to 100 µA) proton beam on target.
2. Non-hard radiation material are located in a zone where the radiation fields are low enough.
3. Front end optics can be exchanged as well as the target.
Disadvantages of the ISAC target station concept

1. Actual confinement box housing the target is not hermetic.
2. Hand on connection and disconnection of the target services.
3. The target can not be conditioned and ready for use,
4. Target module has to move from the target station to the hot-cell, ~ 30 m.
5. Air sensitive material such as LaC and UC creates extra difficulties.
6. Target exchange takes from 3 to 5 weeks, or requires proton beam off periods for installation.
• In the present situation we have the possibility to deliver only one RIB at the time for physics.
 • Our two target stations are sharing the same mass separator.
 • Maintenance in the target hall is using approximately 25-30% of the time.
 • RIB development is also taking 25% of the time.
 • These effects reduce beam time for experiments.
• Need more beams deliver to ISAC users.
Solutions

- Target has to be inside a completely sealed containment box,
 - Handling,
 - conditioning before use,
- Target/ion source services has to be connected remotely,
- One Hot-cells dedicated to target/ion source exchange only,
- Two target stations has to work completely independently of each other,
 - Independent mass separator,
 - Independent cooling water,
 - Independent nuclear ventilation,
- We must be able to service one target station while the other one is delivering RIB to experiment or beam R&D.
• To exchange the target it takes from 3 (need two shifts without proton beam) to 5 weeks,
• It forces us to run our target much longer than we should,
• Low yield because of the radiation damage.
• We are proposing to exchange the target within two days,

• We will have a dedicated hot-cell to exchange the target. The new target will be conditioned and ready for on-line operation before it is installed in the target station.
Photofission

- Photofission of 238U has been proposed in 1999 by W. T. Diamond [NIM, v 432, (1999)p471] as an alternative to produce RIB in Chalk River.

- The idea was later pushed a little further by Y. T. Oganessian in 2000 [RNB2000, Nucl. Phys. A 701 (2002) p 87],

- The continuous gamma spectrum produced by electron is utilized to excite the giant dipole resonance (GDR) in 238U.
Basic Parameters

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron energy</td>
<td>50</td>
<td>MeV</td>
</tr>
<tr>
<td>Total power</td>
<td>0.5</td>
<td>MW</td>
</tr>
<tr>
<td>Electron current</td>
<td>0.01</td>
<td>Ampère</td>
</tr>
<tr>
<td>Target, UC₂</td>
<td>15</td>
<td>g/cm²</td>
</tr>
</tbody>
</table>

- Assuming same target/ion source design in use at ISAC

Low electron beam power < 25 kW

High electron beam power > 25 kW
ISAC Target/Ion Source

Target container
20 mm diameter
20 cm long

Target

Ion source

Fin target with cooling enclosure

P < 5 kW

P ~ 10 kW
• Cooling concept for P ~ 20 - 30 kW
\begin{align*}
\frac{dE_{Rad}}{\rho dx} & \approx -\frac{E}{X_0} \\
\frac{1}{X_0} & = \frac{4\alpha N_A Z (Z + 1) r_e^2 \log(183 Z^{-1/3})}{A} \\
\overline{E} & \approx E_0 \exp\left(-\frac{\rho \Delta x}{X_0}\right)
\end{align*}

- E is the electron energy
- $\alpha \approx 1/137$
- N_A is the Avogadro number, 6,023e23 at/mole
- Z is the material atomic number
- r_e is the classical electron radius ~ 2,818e-13 cm
- A is the molar mass of the material

<table>
<thead>
<tr>
<th>Element</th>
<th>Z</th>
<th>A</th>
<th>ρ (g/cm3)</th>
<th>1/X$_0$</th>
<th>X$_0$ (g/cm2)</th>
<th>τ (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>13</td>
<td>27</td>
<td>2,3</td>
<td>0,0178</td>
<td>56,17</td>
<td>24,42</td>
</tr>
<tr>
<td>Cu</td>
<td>29</td>
<td>63,5</td>
<td>8,92</td>
<td>0,0340</td>
<td>29,45</td>
<td>3,30</td>
</tr>
<tr>
<td>Ta</td>
<td>73</td>
<td>181</td>
<td>16,65</td>
<td>0,0684</td>
<td>14,62</td>
<td>0,88</td>
</tr>
<tr>
<td>W</td>
<td>74</td>
<td>184</td>
<td>19,25</td>
<td>0,0691</td>
<td>14,48</td>
<td>0,75</td>
</tr>
<tr>
<td>Hg</td>
<td>80</td>
<td>202</td>
<td>13,58</td>
<td>0,0729</td>
<td>13,71</td>
<td>1,01</td>
</tr>
<tr>
<td>Pb</td>
<td>82</td>
<td>208</td>
<td>11,34</td>
<td>0,0742</td>
<td>13,47</td>
<td>1,19</td>
</tr>
</tbody>
</table>
Using the Born approximation, Bethe, Heitler, Sauter and Racah developed an expression that gives the photo energy distribution.

\[
d\sigma_k = 2\alpha Z^2 r_0^2 \frac{dk}{k} \left[\left(1 + \left(\frac{E}{E_0} \right)^2 - \frac{2}{3} \frac{E}{E_0} \right) \left(\ln M(0) + 1 - \frac{2}{b} \tan^{-1} b \right) \right.
\]
\[
+ \frac{E}{E_0} \left[\frac{2}{b^2} \ln(1 + b^2) + \frac{4(2 - b^2)}{3b^2} \tan^{-1} b - \frac{8}{3b^2} + \frac{2}{9} \right] \left. \right]
\]

\[
b = \left(\frac{2E_0 EZ^{1/3}}{111 k} \right) \quad \frac{1}{M(0)} = \left(\frac{k}{2E_0 E} \right)^2 + \left(\frac{Z^{1/3}}{111} \right)^2
\]
The photon cone from the interaction of the electron with the heavy nucleus is given by:

\[\langle \Theta^2 \rangle^{1/2} \approx \frac{1}{\gamma} = \frac{m_e c^2}{E} \]

- For \(E = 50 \text{ MeV} \), \(\langle \Theta^2 \rangle^{1/2} \) is \(\approx 10 \text{ mRad} \) and \(100 \text{ mRad} \) at \(5 \text{ MeV} \).
The electron beam impinges into the Hg converter and the resulting gamma beam interact with the ^{238}U target nuclei to produce photofission.

The fission recoils stop in the target material.

The atoms diffuse to the surface and effuse to the ion source to produce a Rare Isotope Beam. (Similar processes as for proton induced RIB.)
There are three processes by which a photon can interact with matter. The relative importance depends on the photon energy.

- At low energy the photon < 0.1 MeV the photon will interact via the photoelectric effect. The cross section for this process falls very rapidly with photon energy,

- At photon energy up to 5 MeV the Compton scattering is the dominant process.

- At higher energy the photon converts into an electron-positron pair in the electrical field of a nucleus.

The result of these processes is that the photon intensity is attenuated.
Once the gamma rays are produced in the converter there is a probability that the gamma ray produces an electron-positron pair,

It is the same when the gamma rays enter the target material.
e+e- pair production

\[\sigma_{e^+e^-} = \alpha Z^2 r_e^2 \left[\frac{28}{9} \ln(2k) - \frac{28}{9} f(Z) - \frac{218}{27} \right] \]

\[k = \frac{E_\gamma}{m_0 c^2} \]

Correction function f(Z)

Cross Section for pair production into Hg converter

Pierre Bricault, TRIUMF,

SEEC, March 2008
To estimate the number of fission induced by photon interaction with ^{238}U we have to integrate the residual photon spectrum with the GDR differential cross section.
Optimization

- Specifications:
 - Electron initial energy: 50 MeV,
 - Electron beam intensity: 10 mA,
 - Converter material: Hg,
 - Optimum is $1,2 \times \text{Hg}_0$.

![Graph showing optimization of converter thickness for 50 MeV electron beam](chart.png)
Optimization of the electron energy, the following plot shows the number of induced fissions as a function of the primary electron beam energy.

- Calculation compared to measurements.
Yield Distribution

Yield 4.6e13 f/s cumulative

Line showing the most neutron rich isotopes
Yield distribution

- Yield of rare isotopes, using the fission yield distribution for 7×10^{13} f/s.

$^{132}\text{Sn} \sim 1 \times 10^{12}$/s
Yield distribution

- Yield of rare isotopes, using the fission yield distribution for $7 \times 10^{13} \text{ f/s}$.

- $\gamma + ^{238}\text{U} \rightarrow ^{\text{A}}\text{Mn} - ^{\text{A}}\text{Rb}$

- $\gamma + ^{238}\text{U} \rightarrow ^{\text{A}}\text{Sr} - ^{\text{A}}\text{Ag}$

- $^{78}\text{Ni} \sim 100/\text{s}$
Yield of rare isotopes, using the fission yield distribution for 7×10^{13} f/s.

Conclusion

• New Target Stations design will allow us to exchange target much faster. The goal is to have a new target/ion source assembly ready within 2 days instead of ~ 4 weeks

• To accomplish this we will have the target/ion source into a true containment box.

• It will allow us to operate air sensitive target material, without having the risk spreading contamination during transport between target-station and hot-cell.

• eLINAC can provide clean neutron rich beams.
Neutron Rich Beams

These beams are not produced with photofission
Neutron rich beams

These beams are not produced with photofission.
Conclusion

- eLINAC can provide clean neutron rich beams.
- eLINAC can produce photofission at a rate $\sim 10^{14}$/s, allowing a third RIB delivery simultaneously to ISAC users.
- eLINAC can provide 8Li beam to β-NMR, 9Be(γ,p)8Li.
- One of the new target station will allow RIB development, => new beams to ISAC users.
• Thank you.
Schedule

- 13 FTE, 6 Technicians, 5 Scientists, 2 Engineers.

Pierre Bricault, TRIUMF,

SEEC, March 2008