From last time:

Electron scattering allows us to measure the charge density distribution of a nucleus, by measuring the diffraction pattern. We assume that the neutron density follows the proton density.

Density of nuclear matter is almost a constant value throughout the nucleus, except for a “skin” at the surface, and is same for all nuclei.

Mean radius of a nucleus

\[r \text{ (fm)} = 1.2 \ A^{1/3} \]

where \(A \) = total number of protons + neutrons

Nuclear matter acts like an incompressible fluid.
UNITS: ENERGY

Energy measured in electron-Volts (eV)

1 volt battery boosts energy of electrons by 1 eV

1 e-Volt = 1.6×10^{-19} Joule

1 MeV = 10^6 eV
1 GeV = 10^9 eV

Recall that atomic and molecular energies ~ eV
nuclear energies ~ MeV
UNITS: MASS

From $E = mc^2$ \[m = \frac{E}{c^2} \] so we measure masses in MeV/c²

1 MeV/c² = 1.7827×10^{-30} kg

Frequently, we get lazy and just set $c=1$, so that we measure masses in MeV

e.g. mass of electron = 0.511 MeV
 mass of proton = 938.272 MeV
 mass of neutron=939.565 MeV

Also widely used unit of mass is the atomic mass unit (amu or u) defined so that Mass(12C atom) = 12 u

1 u =931.494 MeV = 1.6605×10^{-27} kg
NUCLEAR PHYSICS describes nucleon bound into nuclei.

Nuclei are labelled \[^A_Z \text{El}_N \] where

- \(\text{El} \) = the chemical symbol of the element
- \(A \) = Mass Number, number of neutrons \(N \) + number of protons \(Z \)
- \(A = N + Z \)
- \(N \) = Number of neutrons
- \(Z \) = Number of protons

For example: \[^7_3 \text{Li} \] lithium-7, mass =7, protons=3 (hence \(N = 4 \))

ISOTOPE: nuclei with the same \(Z \) and different \(N \) (same element)

For ex.: \[^{12}_6 \text{C}, ^{13}_6 \text{C}, ^{14}_6 \text{C}, ^{18}_6 \text{C}, \ldots \]

ISOBAR: nuclei with same \(A \) (different elements)

For ex.: \[^{39}_{19} \text{Ca}, ^{39}_{19} \text{K}, ^{39}_{18} \text{Ar} \]
There are 4 fundamental types of forces in the universe.
1. Gravity – very weak, negligible for nuclei except for neutron stars
2. Electromagnetic forces – Coulomb repulsion tends to force protons apart
3. Strong nuclear force – binds nuclei together; short-ranged
4. Weak nuclear force – causes nuclear beta decay, almost negligible compared to the strong and EM forces.

How tightly a nucleus is bound together is mostly an interplay between the attractive strong force and the repulsive electromagnetic force.
Let's make a scatterplot of all the stable nuclei, with proton number Z versus neutron number N.

Note:
1. Not all combinations of N, Z are possible! Stable nuclei are confined to a narrow band called the “Valley of Stability”
2. For light nuclei, the valley of stability follows roughly $N=Z$.
Example: isotopes of carbon

<table>
<thead>
<tr>
<th>ISOTOPES OF CARBON</th>
<th>Radioactive</th>
<th>Stable</th>
<th>Radioactive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 minutes</td>
<td></td>
<td>5730 years</td>
</tr>
<tr>
<td>(^{11}\text{C})</td>
<td>6 protons</td>
<td>6 protons</td>
<td>6 protons</td>
</tr>
<tr>
<td></td>
<td>5 neutrons</td>
<td>6 neutrons</td>
<td>7 neutrons</td>
</tr>
<tr>
<td>(^{12}\text{C})</td>
<td>0%</td>
<td>98.9%</td>
<td>1.1%</td>
</tr>
<tr>
<td>(^{13}\text{C})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{14}\text{C})</td>
<td></td>
<td></td>
<td>(10^{-10}\) %</td>
</tr>
</tbody>
</table>

Valley of Stability:

proton-excess side of valley of stability:
- nucleus sheds its excess protons by beta+ decay
 \[p \rightarrow n + e^+ + \nu_e \]

neutron-excess side of valley of stability:
- nucleus sheds its excess neutrons by beta- decay
 \[n \rightarrow p + e^- + \nu_e \]

ISOTOPES OF CARBON

<table>
<thead>
<tr>
<th></th>
<th>Radioactive</th>
<th>Stable</th>
<th>Radioactive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 minutes</td>
<td></td>
<td>5730 years</td>
</tr>
<tr>
<td>^{11}C</td>
<td></td>
<td>^{12}C</td>
<td>^{13}C</td>
</tr>
<tr>
<td>6 protons</td>
<td>6 protons</td>
<td>6 protons</td>
<td>6 protons</td>
</tr>
<tr>
<td>5 neutrons</td>
<td>6 neutrons</td>
<td>7 neutrons</td>
<td>8 neutrons</td>
</tr>
</tbody>
</table>

^{11}B
- 5 protons
- 6 neutrons
- (stable)

^{14}N
- 7 protons
- 7 neutrons
- (stable)
Why do light nuclei tend to have $N \approx Z$? Because protons and neutrons obey the Pauli exclusion principle: two protons or two neutrons cannot both occupy the same quantum state.

This is familiar from high school chemistry, where the allowed atomic orbitals can hold only two electrons of opposite spins.

Similarly, the protons and neutrons inside a nucleus can have only certain allowed quantum states, which fill from the bottom up. If there are a lot more neutrons than protons, then it is energetically allowed for the excess neutrons to change into protons via beta-decay, like this:

until the tops of the proton and neutron "Fermi seas" are at the same energy.
Note:

3. For heavier nuclei, $N>Z$; the heavier the nucleus, the more neutrons you need to make the nucleus stable.
 e.g. ^{56}Fe has 26 p, 28 n but ^{208}Pb has 82 p, 126 n (nearly 50% more n than p)

Reason: protons and neutrons both feel the attractive strong interaction, but only protons feel the repulsive Coulomb force. Therefore need the extra binding of more neutrons to overcome the repulsion of the protons.
For light nuclei, Coulomb repulsion is small, so nuclei want to have equal numbers of protons and neutrons.

For heavy nuclei, the large Coulomb repulsion means that we need more neutrons than protons to hold the nucleus together.
The further the nuclide is from the valley of stability, the shorter is its half-life.
DECAY MODES OF NUCLEI

http://csnwww.in2p3.fr/amdc/
Recall Einstein's famous formula $E = mc^2$

High energy content E means higher mass m. This is negligible on scales of everyday life.

e.g. suppose I expend energy $\Delta E = 1$ Joule to wind up a 1 kg alarm clock
The clock's mass increases by $\Delta m = \Delta E / c^2 = 1.1 \times 10^{-17}$ kg

i.e. the mass changes by ~ 1 part in 10^{17} (negligible)

As we will see shortly, the change in mass is not negligible on the nuclear scale.

When a system of two or more particles get bound to each other, the energy (and hence the mass) of that system decreases.
Atom:

\[m(\text{atom}) = m(\text{nucleus}) + Z m_e - \frac{b}{c^2} \]

where \(b = \text{binding energy of the electrons} \)

Nucleus:

\[m(\text{nucleus}) = Z m_p + N m_n - \frac{B}{c^2} \]

where \(B = \text{nuclear binding energy} \)
What does nuclear binding energy mean?

Suppose we assemble a nucleus from Z protons and N neutrons, initially at infinite separation.

Nuclear binding energy B is the amount of energy given off when the nucleus is assembled.

Similarly, B is the energy required to tear the nucleus apart into Z protons and N neutrons at infinity.

The larger the binding energy, the smaller the mass of the nucleus.
Relative sizes of atomic + nuclear binding energies

Consider simplest atom (hydrogen)

\[
\begin{array}{c}
\text{atomic binding energy} = 13.6 \text{ eV}
\end{array}
\]

Consider simplest nucleus (deuteron)

\[
\begin{array}{c}
\text{nuclear binding energy} = 2.22 \text{ MeV}
\end{array}
\]

\[\therefore \text{nuclear binding energies} \gg \text{atomic binding energies}\]
Now let's consider $\frac{B}{A}$ i.e. the average binding energy per nucleon in a nucleus i.e. how tightly are the nucleons bound inside the nucleus? or equivalently, how much energy does it take to remove a nucleon from the nucleus?

- **tightest binding for Fe region nuclei**

- Gradual decrease in binding with increasing mass, due to greater Coulomb repulsion between the protons

- Average binding energy ~ 8 MeV per nucleon – almost constant for mass 12 to mass 238

- Initial rapid rise as more nucleons added
Why does the graph of binding energy initially rise, peak at Fe, and then gradually decrease?

To understand why, we imagine the atomic nucleus to be like a drop of liquid with a positive charge.
Water molecules naturally attract each other.

So small water droplets want to coalesce into larger drops, to allow as many water molecules as possible to “link together” with its neighbours. Since the molecules at the surface don't have any neighbours on one side, coalescing into bigger drops reduces the percentage of molecules at the surface.
Now suppose our drops of liquid are not electrically neutral, but has a positive charge, just like an atomic nucleus. A drop of liquid bearing positive charge can't afford to get too big, because as you cram more and more positive charge close together, the positive charges repel each other more and more strongly.

Molecular attraction wants to coalesce the drops together. But electric repulsion wants to push them apart.

There must be some optimum size between very small and very large drops where the liquid drop is the most stable.
The atomic nucleus is exactly the same. It behaves like a positively-charged liquid drop. Very small nuclei want to fuse together to be bigger to achieve greater nuclear stability, but becoming too big means stronger repulsion. The most stable nucleus occurs at iron (not too big, not too small).
This behaviour, that the B/A value is almost a constant for all but the lightest nuclei, is termed the saturation of nuclear forces. It is a consequence of the short range of the strong nuclear force: each nucleon feels the attraction of only its nearest neighbours.

If each of the A nucleons in a nucleus could bind to each of the other (A-1) nucleons, then the total binding energy B would be proportional to the number of pairs, i.e., $B \sim A(A-1) \sim A^2$, and $B/A \sim A$. This is NOT what is observed in nuclei!

Instead, $B/A \sim constant$. This indicates that nuclear binding forces must be short-ranged, as shown by analogy in the next slide.
Mundane example of saturation of short range forces

The inter-molecular forces binding water molecules to each other in liquid form are weak, short range Van der Waals forces. Each water molecule feels only its nearest neighbours.

Let the number of water molecules = A

When the water is heated up, the inter-molecular bonds are broken and the water evaporates as steam.

\[
\frac{\text{Energy required to evaporate A molecules of water}}{\text{Energy of B}} = \frac{\text{Binding}}{\text{Energy}} \propto A
\]

i.e. \(\frac{B}{A} = \text{constant} = 10.5 \text{ kilocalories/mole} \)

The Van der Waals inter-molecular forces have short range compared to the size of the pot of water.
On the other hand, consider a large sphere of water of mass M bound together by the force of gravity.

\[
\left(\text{gravitational binding energy} \right) = \frac{3}{5} \frac{GM^2}{R}
\]

Since $M \propto A$ (the number of water molecules),

\[
B \propto A^2
\]

\[
\frac{B}{A} \propto A
\]

The gravitational binding energy does not saturate because each water molecule feels the gravitational attraction of every other molecule, not just its nearest neighbours. This is because gravity is an infinite range force.
The average binding energy of ~ 8 MeV per nucleon is nearly 1% of the mass of a proton or neutron (938 MeV).

i.e. the mass of a nucleus is nearly 1% smaller than the sum of the masses of its constituent nucleons, because of the large binding energy. Easily measured, and not negligible as it is in atoms and molecules.
going from $A=1$ to $A=4$, the average binding energy per nucleon increases from 0 to 7 MeV

Fusion reaction $4 \, ^{1}p \rightarrow ^{4}He + 2 \, e^+ + 2 \, \nu_e$ liberates $\sim 4 \times 7 = 28$ MeV

THIS REACTION PRODUCES ENERGY IN THE SUN!
hydrogen→helium gives the biggest gain in binding energy. Stars spend most of their lives in this stage. (Main sequence stars). Later stages which fuse He+He+He→C, He+C→O, etc. produce far less energy and last much shorter periods of time.
<table>
<thead>
<tr>
<th>Process</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen burning</td>
<td>7 Myr</td>
</tr>
<tr>
<td>Helium burning</td>
<td>500 kyr</td>
</tr>
<tr>
<td>Carbon burning</td>
<td>600 yr</td>
</tr>
<tr>
<td>Neon burning</td>
<td>1 yr</td>
</tr>
<tr>
<td>Silicon burning</td>
<td>1 day</td>
</tr>
<tr>
<td>Core collapse</td>
<td><1 second</td>
</tr>
</tbody>
</table>
going from $A=235$ to $A=118$, the average binding energy per nucleon increases by ~ 1 MeV

Fission of ^{235}U into 2 equal fragments gives about $235 \times 1 = 235$ MeV. THIS REACTION PRODUCES ENERGY IN NUCLEAR REACTORS.
TITAN facility at TRIUMF measures the masses of nuclides far from the valley of stability.
EXPERIMENTAL MASSES (ION TRAP, multi-turn)

Cyclotron frequency: $\nu_c = \frac{1}{2\pi} \frac{q}{m} B$

Superposition
strong homogeneous magnetic field
weak electrostatic quadrupole field

PENNING trap
Liquid Drop Model of the Nucleus

The behaviour of $B/A \sim \text{constant}$ is reminiscent of the behaviour of a liquid. In the 1930’s Von Weiszacker developed a model for the binding energy of a nucleus by modeling it as a drop of liquid with electric charge, plus some correction terms.

Like the water in our kettle, the binding energy has a term which is just proportional to the volume of liquid

i.e.

$\text{Volume Term } a_v A$
The Surface Term $-a_s A^{2/3}$

- Nucleons at the surface are surrounded by fewer other nucleons, thus the binding energy is reduced (-) compared to the nucleons further inside.
- This contribution is proportional to the surface $\sim A^{2/3}$

Surface area of a sphere $\sim r^2$

and $r \sim A^{1/3}$

so surface area $\sim A^{2/3}$
Electrostatic potential energy of a uniformly charged sphere of charge \(Z \) and radius \(r \)

\[
V \sim \frac{Z^2}{r}
\]

and \(r \sim A^{1/3} \)
Recall that protons and neutrons are fermions so like electrons in an atom, you can't have more than one of them in the same quantum state. Analogy with two columns of fluid with different heights – it is energetically favourable to let half the excess of blue fluid flow into the red fluid to minimize the gravitational potential energy.
Empirical evidence of pairing in nuclei:
Of all the known stable nuclei 167 are even-N even-Z
4 are odd-N odd-Z

There is extra stability in the nucleus when there are an even number of protons, paired off, and an even number of neutrons, paired off.
The binding energy can be parameterised using five terms:

\[B(A, Z) = a_v A - a_s A^{2/3} - a_c \frac{Z^2}{A^{1/3}} - a_a \frac{(N-Z)^2}{4A} - \frac{\delta}{A^{1/2}} \]

- \(a_v = 15.67 \text{ MeV/c}^2 \)
- \(a_s = 17.23 \text{ MeV/c}^2 \)
- \(a_c = 0.714 \text{ MeV/c}^2 \)
- \(a_a = 93.15 \text{ MeV/c}^2 \)
- \(\delta = -11.2 \text{ MeV/c}^2 \)
 - even \(Z \) and \(N \)
 - odd \(A \)
 - odd \(Z \) and \(N \)
A very simple model of the nucleus which gives a pretty good explanation for the gross features of the nuclear binding energy.

How good? Let's compare the predictions of this model with experiment:

The semi-empirical mass formula, first introduced in 1935 by Weizsäcker (therefore also Weizsäcker-formula), can be written as

\[M(A, Z) = Nm_n + Zm_p + Zm_e - B(A, Z) \]

where \(B(A, Z) \) is the binding energy.
Binding energies & experiment

- Binding energy per nucleon of nuclei with even mass number A.
- Solid line corresponds to semi-empirical mass formula.
- Relatively large deviations for small A.
- For large A somewhat stronger binding at certain Z and N. These so-called 'magic numbers' will be discussed when we consider the shell model.
A line with -45 degrees slope in the plot of Z versus N is a line of constant mass number A (if Z changes by +1, then N changes by -1, and A=N+Z remains constant).

If we move along this line of constant A, and plot the mass of the nucleus versus Z, we get a parabolic shape.
e.g. $A=12$. Isobars

mass smallest, hence binding greatest, when $N=Z=6$
What happens when you have a nucleus off the bottom of the valley of stability?

The nucleus can "roll towards the bottom of the valley" by changing protons to neutrons (or neutrons to protons), keeping A constant.

Recall

$n \rightarrow p + e^- + \bar{\nu}_e$

$p \rightarrow n + e^+ + \nu_e$

Example: mass 12 system ($A=12$)

- ^{12}B has too many neutrons; changes a neutron to a proton
 $^{12}\text{B} \rightarrow ^{11}\text{C} + e^- + \bar{\nu}_e$
 β^- decay

- ^{12}N has too many protons; changes a proton to a neutron
 $^{12}\text{N} \rightarrow ^{12}\text{C} + e^+ + \nu_e$
 β^+ decay

Diagram showing mass vs. Z: ^{12}B and ^{12}N transitions with Z and mass axes.
If we now repeat this procedure for many different values of A, and plot the mass in the third dimension (out of the page), the mass parabolas form a valley or canyon in the $N-Z$ plane. This is called the "valley of stability".
As we climb further and further away from the valley of stability, the nuclei become more unstable and decay by beta-decay. Eventually, the nuclei become so unstable that the binding energy of the last proton or neutron becomes zero – the nucleus instantly falls apart the moment it is made, by “dripping” out protons or neutrons. These limits in the N vs Z scatterplot are called “drip lines”.

![Diagram showing the valley of stability and drip lines for protons and neutrons.](image)
The "valley of stability" - new nuclear machines such as the Rare Isotope Accelerator will open up studies of nuclear phenomena using beams of short-lived isotopes, which form the high "walls" of the valley.
Purpose of ISAC and other radioactive ion-beam labs is to study the properties of nuclei far from the valley of stability – their masses, their structure, the reactions that they undergo, novel modes of nuclear excited states, etc. etc.

Even the exact limits of nuclear stability are not well established.
Nuclei far from the valley of stability by means of a **spallation** reaction on a heavy stable nucleus.
500 MeV protons

TRIUMF cyclotron

Primary beam

Thick & hot target

Ion source

Isotope separator

Post-accelerator

Radioactive ion beam

ISAC-1 OR ISAC-II
In summary:

1. The mass and binding energy of a nucleus is an interplay between the attractive strong interaction and the repulsive Coulomb interaction.

2. The liquid drop model provides a simple way to understand the systematic features of nuclear masses and binding energies of nuclei close to the valley of stability.

3. ISAC and other labs like it explore the properties of nuclei far from the valley of stability.