Calculation of isotopic shifts of KLL dielectronic resonance peaks and x-ray lines in heavy few-electron ions

Z. Harman, U. D. Jentschura, C. H. Keitel

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg

TITAN Collaboration Meeting and Workshop TRIUMF, Vancouver, June 10-11, 2005

Outline

- Atomic physics experiments to investigate nuclear properties
- Dielectronic recombination
- The multiconfiguration Dirac-Fock method
 - The self-consistent field procedure
 - Nuclear volume, mass and polarization effects
 - QED and Breit corrections to MCDF energies

3 Numerical resuls

- KLL DR resonance peaks
- K α x-rays following KLL DR
- $2p_{3/2} \rightarrow 2s$ x-rays following KLL DR
- $2p_{3/2} \rightarrow 2s$ x-rays to the Li-like ground state

Atomic physics experiments to investigate nuclear properties Dielectronic recombination

Introduction

- New approach: some nuclear properties are hard to measure by nuclear physics experiments precise atomic physics measurements + precise theory
- Laser spectroscopy: ⁶He, ^{6,7}Li, ^{8,9} Li, ¹¹Li determination of nuclear root mean square charge radii $\sqrt{\langle r^2 \rangle}$
- Isotopic shifts in dielectronic recombination and x-ray spectra?
 EBITs and efficient crystal spectrometers

Atomic physics experiments to investigate nuclear properties Dielectronic recombination

- Dielectronic recombination (DR):
 - Radiationless resonant capture of a continuum electron
 - Radiative decay of the autoionizing state

$$\mathcal{A}^{q+}(i)+ \mathbf{e}^-
ightarrow [\mathcal{A}^{(q-1)+}(d)]^{**}
ightarrow [\mathcal{A}^{(q-1)+}(f)]^* + \omega$$

• Radiative recombination (RR): direct emission of a photon

$$A^{q+}(i) + e^{-} \rightarrow [A^{(q-1)+}(f)]^* + \omega'$$

Atomic physics experiments to investigate nuclear properties Dielectronic recombination

Shift of DR resonances

Total cross section of DR:

$$\sigma_{i\to d\to f}^{\mathrm{DR}}(\varepsilon) = \frac{2\pi^2}{p^2} \frac{A_r^{d\to f}}{\Gamma_d} L_d(\varepsilon) V_a^{i\to d},$$

with the Lorentz profile

$$L_d(\varepsilon) = \frac{\Gamma_d/(2\pi)}{(E_i + \varepsilon - E_d)^2 + \frac{\Gamma_d^2}{4}}$$

Introduction

The multiconfiguration Dirac-Fock method Numerical resuls Summary Atomic physics experiments to investigate nuclear properties Dielectronic recombination

Shift of DR resonances

Atomic physics experiments to investigate nuclear properties Dielectronic recombination

KLL DR measurement at the MPI Heidelberg EBIT

Antonio Javier González Martínez *et al.* X-ray spectrum: the KLL recombination regime

The self-consistent field procedure Nuclear volume, mass and polarization effects QED and Breit corrections to MCDF energies

The multiconfiguration Dirac-Fock method

Dirac-Coulomb Hamiltonian:

$$\mathcal{H}^{ ext{DC}} = \sum_{i=1}^{N} h_i + \sum_{i < j}^{N} rac{1}{r_{ij}}$$

with the one-particle operators

$$h_i = c\vec{\alpha}_i \vec{p}_i + (\beta_i - 1)c^2 + V_{nuc}(r_i)$$

The self-consistent field procedure Nuclear volume, mass and polarization effects QED and Breit corrections to MCDF energies

Atomic state function (ASF) ansatz:

$$|\Gamma PJM
angle = \sum_{i=1}^{n_c} c_i |\gamma_i PJM
angle$$

The CSFs are constructed as *jj*-coupled *N*-particle Slater determinants

One-particle Dirac orbitals:

$$\psi_{n\kappa\mu}(\vec{r}) = \frac{1}{r} \left(\begin{array}{c} P_{n\kappa}(r)\Omega_{\kappa\mu}(\hat{r}) \\ iQ_{n\kappa}(r)\Omega_{-\kappa\mu}(\hat{r}) \end{array} \right)$$

The self-consistent field procedure Nuclear volume, mass and polarization effects QED and Breit corrections to MCDF energies

From variation of the c_i in the energy functional (defined as the expectation value of H^{DC}):

$$\sum_{j=1}^{n_{c}} (\langle \gamma_{i} P J M | H^{\rm DC} | \gamma_{j} P J M \rangle - E_{\Gamma}^{DC} \delta_{ij}) c_{j} = 0$$

 \rightarrow configuration interaction method (CI) If the variation of the orbital wave functions is also allowed \rightarrow multiconfiguration Dirac-Fock equations

Nuclear finite-size effects: Fermi two-parameter distribution

$$\rho_{nuc}(r) = \frac{\rho_0}{1 + e^{(r-c)/a}}, \quad a = t 4 \ln 3$$

Numerical integration of the Dirac equations with $V_{nuc}(\rho_{nuc}(r))$

Z. Harman, U. D. Jentschura, C. H. Keitel Calculation of isotopic shifts

The self-consistent field procedure Nuclear volume, mass and polarization effects QED and Breit corrections to MCDF energies

- Nuclear finite-mass effects:
 - The reduced mass correction

$$m_{
m e}
ightarrow rac{m_{
m e} m_{
m nuc}(A)}{m_{
m e} + m_{
m nuc}(A)}$$

The correction due to the correlated motions of the electrons: specific mass shift (SMS) described by the non-relativistic operator

$$H_{\mathrm{SMS}} = rac{1}{m_{\mathrm{nuc}}(A)} \sum_{i < j}^{N} ec{p}_i \cdot ec{p}_j$$

 Nuclear polarization: virtual excitation of collective nuclear degrees of freedom by shell electrons (Coulomb excitation and current-current interaction) → not included Introduction The multiconfiguration Dirac-Fock method Numerical resuls Summary The self-consistent field procedure Nuclear volume, mass and polarization effects QED and Breit corrections to MCDF energies

• The self-energy in hydrogenlike systems

$$E_{n\kappa}^{\rm SE} = \frac{Z^4}{\pi c^3 n^3} F_{n\kappa}(Z\alpha)$$

Estimation of the self-energy screening

- Vacuum polarization correction: Uehling potential approximation + screening
- Breit interaction:

$$V_0^B = \frac{1}{r_{12}} \left(-\frac{1}{2} \vec{\alpha}_1 \vec{\alpha}_2 - \frac{(\vec{\alpha}_1 \vec{r}_{12})(\vec{\alpha}_2 \vec{r}_{12})}{2r_{12}^2} \right)$$

Numerical implementation: GRASP (General-Purpose Relativistic Atomic Structure Program) of Grant, Dyall et al. (versions: GRASP 1.0, GRASP92)

KLL DR resonance peaks $K\alpha$ x-rays following KLL DR $2p_{3/2} \rightarrow 2s$ x-rays following KLL DR $2p_{3/2} \rightarrow 2s$ x-rays to the Li-like ground state

KLL DR resonance peaks

Intermediate state $ d\rangle$	E _{res} (238)	228	230	232	233	234	235	236	S _d
$[1s2s^2]_{1/2}$	63058	-2.20	-1.75	-1.29	-1.06	-0.83	-0.61	-0.45	3.70e+4
$[(1s2s)_1^2 p_{1/2})]_{3/2}$	63104	-2.73	-2.17	-1.61	-1.32	-1.05	-0.77	-0.56	2.02e+3
$[(1s2s)_12p_{1/2})]_{1/2}$	63138	-2.74	-2.17	-1.61	-1.32	-1.05	-0.77	-0.56	1.76e+4
$[(1s2s)_0 2p_{1/2})]_{1/2}$	63392	-2.75	-2.19	-1.62	-1.33	-1.05	-0.77	-0.56	5.54e+4
$[1s2p_{1/2}^2]_{1/2}$	63445	-3.28	-2.61	-1.94	-1.59	-1.26	-0.93	-0.66	2.19e+1
$[(1s2s)_{1}2p_{3/2}]_{5/2}$	67373	-2.81	-2.23	-1.66	-1.36	-1.07	-0.79	-0.57	1.97e+2
$[(1s2s)_1 2p_{3/2}]_{3/2}$	67493	-2.81	-2.23	-1.66	-1.36	-1.07	-0.79	-0.57	3.66e+2
$[(1s2s)_12p_{3/2}]_{1/2}$	67570	-2.81	-2.23	-1.66	-1.36	-1.07	-0.79	-0.57	2.48e+2
$[(1s2p_{1/2})_12p_{3/2}]_{5/2}$	67643	-3.41	-2.71	-2.02	-1.66	-1.31	-0.97	-0.69	2.30e+4
$[(1s2p_{1/2})_02p_{3/2}]_{3/2}$	67662	-3.41	-2.71	-2.02	-1.66	-1.31	-0.97	-0.69	7.83e+3
$[(1s2p_{1/2})_12p_{3/2}]_{1/2}$	67700	-3.41	-2.71	-2.02	-1.66	-1.31	-0.97	-0.69	1.19e+3
$[(1s2s)_{0}2p_{3/2}]_{3/2}$	67702	-2.83	-2.25	-1.67	-1.37	-1.08	-0.80	-0.57	2.64e+4
$[(1s2p_{1/2})_12p_{3/2}]_{3/2}$	67791	-3.41	-2.71	-2.02	-1.66	-1.31	-0.97	-0.69	1.07e+4
$[1s(2p_{3/2}^2)_2]_{5/2}$	71977	-3.49	-2.77	-2.06	-1.70	-1.34	-0.99	-0.70	1.33e+4
$[1s(2p_{3/2}^2)_2]_{3/2}$	72069	-3.48	-2.77	-2.06	-1.69	-1.34	-0.99	-0.70	1.33e+3
$[1s(2p_{3/2}^2)_0]_{1/2}$	72108	-3.48	-2.77	-2.06	-1.70	-1.34	-0.99	-0.70	2.58e+3

Table: KLL-DR Resonance energies E_{res} for initially He-like ²³⁸U ions in eV. The resonance strengths S_d are given in barn eV

KLL DR resonance peaks $K\alpha$ x-rays following KLL DR $2p_{3/2} \rightarrow 2s$ x-rays following KLL DR $2p_{3/2} \rightarrow 2s$ x-rays to the Li-like ground state

Z-scaling of resonance shifts: He-like

Summarv

From: R. Şchiopu, Z. Harman, W. Scheid and N. Grün, Eur. Phys. J. D **31**, 21 (2004)

Z. Harman, U. D. Jentschura, C. H. Keitel Calculation of isotopic shifts

KLL DR resonance peaks K_{α} x-rays following KLL DR $2p_{3/2} \rightarrow 2s$ x-rays following KLL DR $2p_{3/2} \rightarrow 2s$ x-rays to the Li-like ground state

Z-scaling of resonance shifts: H-like

Summarv

From: R. Şchiopu, Z. Harman, W. Scheid and N. Grün, Eur. Phys. J. D **31**, 21 (2004)

Z. Harman, U. D. Jentschura, C. H. Keitel Calculation of isotopic shifts

Summarv

KLL DR resonance peaks $K_{\alpha} x$ -rays following KLL DR $2p_{3/2} \rightarrow 2s x$ -rays following KLL DR $2p_{3/2} \rightarrow 2s x$ -rays to the Li-like ground state

K α x-rays following KLL DR

Intermediate state $ d\rangle$	Final state $ f\rangle$	<i>E</i> _x (238)	228	230	232	233	234	Ar
[1s2s ²] _{1/2}	[1s ² 2s] _{1/2}	95897	-2.93	-2.34	-1.75	-1.45	-1.16	1.68e+14
,	$[1s^22p_{1/2}]_{1/2}$	95614	-2.34	-1.87	-1.40	-1.16	-0.93	2.42e+15
[(1s2s) ₁ 2p _{1/2})] _{3/2}	$[1s^22s]_{1/2}$	95943	-3.46	-2.76	-2.07	-1.71	-1.37	3.11e+16
	$[1s^22p_{1/2}]_{1/2}$	95660	-2.87	-2.29	-1.72	-1.42	-1.14	1.17e+14
$[(1s2s)_12p_{1/2})]_{1/2}$	$[1s^22s]_{1/2}$	95977	-3.46	-2.76	-2.07	-1.71	-1.37	1.55e+16
	$[1s^22p_{1/2}]_{1/2}$	95694	-2.87	-2.29	-1.72	-1.42	-1.14	1.09e+14
$[(1s2s)_0 2p_{1/2})]_{1/2}$	$[1s^22s]_{1/2}$	96231	-3.48	-2.78	-2.08	-1.72	-1.38	1.67e+16
$[1s2p_{1/2}^2]_{1/2}$	[1s ² 2p _{1/2}] _{1/2}	96001	-3.41	-2.72	-2.04	-1.69	-1.35	4.48e+16
[(1s2s) ₁ 2p _{3/2}] _{5/2}	$[1s^22s]_{1/2}$	100212	-3.53	-2.82	-2.12	-1.75	-1.40	2.03e+14
	$[1s^22p_{3/2}]_{3/2}$	95751	-2.87	-2.29	-1.72	-1.42	-1.14	1.18e+14
[(1s2s) ₁ 2p _{3/2}] _{3/2}	$[1s^22s]_{1/2}$	100332	-3.53	-2.82	-2.12	-1.75	-1.40	3.21e+16
	$[1s^22p_{3/2}]_{3/2}$	95871	-2.87	-2.29	-1.72	-1.42	-1.14	1.16e+14
[(1s2s) ₁ 2p _{3/2}] _{1/2}	$[1s^22s]_{1/2}$	100409	-3.53	-2.82	-2.12	-1.75	-1.40	4.20e+16
	$[1s^22p_{3/2}]_{3/2}$	95948	-2.87	-2.30	-1.72	-1.42	-1.14	1.18e+14
$[(1s2p_{1/2})_12p_{3/2}]_{5/2}$	[1s ² 2p _{1/2}] _{1/2}	100199	-3.54	-2.83	-2.12	-1.76	-1.40	2.03e+14
	$[1s^22p_{3/2}]_{3/2}$	96021	-3.47	-2.78	-2.08	-1.72	-1.38	3.14e+16
$[(1s2p_{1/2})_02p_{3/2}]_{3/2}$	$[1s^22p_{1/2}]_{1/2}$	100218	-3.54	-2.83	-2.12	-1.76	-1.40	1.13e+16
	$[1s^22p_{3/2}]_{3/2}$	96040	-3.47	-2.78	-2.08	-1.72	-1.38	2.74e+16

KLL DR resonance peaks and K α x-rays: Large isotope shifts but high absolute energies

KLL DR resonance peaks K_{α} x-rays following KLL DR $2p_{3/2} \rightarrow 2s$ x-rays following KLL DR $2p_{3/2} \rightarrow 2s$ x-rays to the Li-like ground state

$2p_{3/2} \rightarrow 2s$ x-rays following KLL DR

Intermediate state $ d\rangle$	Final state $ f\rangle$	$E_{x}(238)$	228	230	232	233	234	235
[(1s2s) ₁ 2p _{3/2}] _{3/2}	$[1s(2s^2)_0]_{1/2}$	4433	-0.60	-0.48	-0.36	-0.30	-0.24	-0.18
$[(1s2s)_1 2p_{3/2}]_{1/2}$	$[1s(2s^2)_0]_{1/2}$	4509	-0.61	-0.48	-0.36	-0.30	-0.24	-0.18
$[(1s2s)_0 2p_{3/2}]_{3/2}$	$[1s(2s^2)_0]_{1/2}$	4646	-0.62	-0.50	-0.37	-0.31	-0.25	-0.19
$[(1s2p_{1/2})_12p_{3/2}]_{5/2}$	$[(1s2s)_12p_{1/2}]_{3/2}$	4540	-0.68	-0.54	-0.41	-0.34	-0.27	-0.20
$[(1s2p_{1/2})_02p_{3/2}]_{3/2}$	$[(1s2s)_12p_{1/2}]_{3/2}$	4558	-0.68	-0.54	-0.41	-0.34	-0.27	-0.20
$[(1s2p_{1/2})_02p_{3/2}]_{3/2}$	$[(1s2s)_12p_{1/2}]_{1/2}$	4524	-0.67	-0.54	-0.40	-0.33	-0.27	-0.20
$[(1s2p_{1/2})_12p_{3/2}]_{3/2}$	$[(1s2s)_02p_{1/2}]_{1/2}$	4395	-0.66	-0.53	-0.39	-0.33	-0.26	-0.20
$[1s(2p_{3/2}^2)_2]_{5/2}$	$[(1s2s)_12p_{3/2}]_{5/2}$	4604	-0.68	-0.54	-0.41	-0.34	-0.27	-0.20
$[1s(2p_{3/2}^2)_2]_{5/2}$	[(1s2s) ₁ 2p _{3/2}] _{3/2}	4484	-0.68	-0.54	-0.41	-0.34	-0.27	-0.20
$[1s(2p_{3/2}^2)_2]_{3/2}$	$[(1s2s)_12p_{3/2}]_{3/2}$	4575	-0.68	-0.54	-0.40	-0.33	-0.27	-0.20
$[1s(2p_{3/2}^2)_0]_{1/2}$	$[(1s2s)_12p_{3/2}]_{3/2}$	4614	-0.68	-0.54	-0.41	-0.34	-0.27	-0.20
$[1s(2p_{3/2}^2)_2]_{3/2}$	[(1s2s) ₁ 2p _{3/2}] _{1/2}	4499	-0.67	-0.54	-0.40	-0.33	-0.27	-0.20
$[1s(2p_{3/2}^2)_0]_{1/2}$	$[(1s2s)_12p_{3/2}]_{1/2}$	4538	-0.68	-0.54	-0.41	-0.34	-0.27	-0.20
$[1s(2p_{3/2}^2)_2]_{5/2}$	$[(1s2s)_0 2p_{3/2}]_{3/2}$	4271	-0.66	-0.53	-0.39	-0.33	-0.26	-0.20
$[1s(2p_{3/2}^2)_2]_{3/2}$	$[(1s2s)_0 2p_{3/2}]_{3/2}$	4362	-0.66	-0.52	-0.39	-0.32	-0.26	-0.19
$[1s(2p_{3/2}^2)_0]_{1/2}$	$[(1s2s)_0 2p_{3/2}]_{3/2}$	4401	-0.66	-0.53	-0.39	-0.33	-0.26	-0.20

Introduction The multiconfiguration Dirac-Fock method	KLL DR resonance peaks $K\alpha$ x-rays following KLL DR
Numerical resuls	$2p_{3/2} \rightarrow 2s$ x-rays following KLL DR
Summary	$2p_{3/2}^2 \rightarrow 2s$ x-rays to the Li-like ground state

$2p_{3/2} \rightarrow 2s \text{ x-rays:}$ Only slightly smaller isotope shifts and much lower transition energies \rightarrow preferable for experimental observation

KLL DR resonance peaks $K\alpha x$ -rays following KLL DR $2p_{3/2} \rightarrow 2s x$ -rays following KLL DR $2p_{3/2} \rightarrow 2s x$ -rays to the Li-like ground state

$2p_{3/2} \rightarrow 2s$ x-rays to the Li-like ground state

Summarv

Transition		E _x (238)	228	230	232	233	Ar
$1s^2 2p_{3/2} \rightarrow 1s^2 2s$	This work	4461	0.66	0.53	0.39	0.33	1.39e+13
	Experiment	4459.37 ± 0.35				0.256 ± 0.118	

Experiment:

S. R. Elliott, P. Beiersdorfer and M. H. Chen (LLNL SEBIT) Trapped-Ion Technique for Measuring the Nuclear Charge Radii of Highly Charged Radioactive Isotopes PRL **76**, 1031 (1996)

Summary

Provide a guideline for TITAN isotope shift measurements: Theoretical absolute energies and isotope shifts for

- KLL DR resonance peaks $K\alpha$ x-rays
- K α x-rays following DR

 $\bullet \ 2 p_{3/2} \rightarrow 2s$ x-ray lines \rightarrow most likely to be measurable Outlook

- Pick an element and isotopes
- Make the experiment
- Extract $\delta \langle r^2 \rangle$

Acknowledgments

Jens Dilling (TRIUMF) Johannes Braun, Antonio Javier González Martínez, José Crespo (MPI Heidelberg) Werner Scheid (JLU Giessen)