You are here

Laser Polarizer Facility

The laser polarizer facility (Polarizer), produces ion beams which are highly nuclearspin polarized, up to 80/% or more in some cases. This is accomplished using laser interaction with the incoming beam. The outer electron of each atom passing through counter-propagating laser light repeatedly absorbs and emits photons, indirectly affecting the nucleus as well via the magnetic interaction between the electron and the nucleus. In our case, the angular momentum of circularly polarized light is transferred to the nuclei. Thus a beam with high nuclear polarization becomes available as an analytical tool. The polarizer facility, consisting of a continuous-wave, narrow-bandwidth laser system and the polarizer beam line, was built and is operated under TRIUMF research scientist Dr. Philip Levy. The main usage of the Polarizer has been to provide polarized 8Li for condensed matter studies using beta-detected nuclear magnetic resonance (βNMR) and nuclear quadrupole resonance (βNQR), but it also provides polarized beams for tests of fundamental symmetries and in nuclear structure studies. In the latter category there is overlap with the Laser Spectroscopy group, who conduct collinear fast beam laser spectroscopy (CFBS) experiments using the polarizer facility to determine nuclear moments via precision optical isotope shift and hyperfine structure measurements. Before starting the polarizer facility Dr. Levy helped develop and operate the optically pumped polarized H- ion source (OPPIS), which allowed the TRIUMF cyclotron to provide polarized proton beams to high precision experiments. Although the polarized proton program at TRIUMF ended in 2000, OPPIS lives on as the polarized source at Brookhaven National Lab Polarizer laser lab Polarizer beam line Be

8 Lithium

for beta-NMR, beta-NQR & particle physics

11 Beryllium

sensitive asymmetry detection needed

Phil Levy 2010 - laser lab
  Phil Levy

Fluorine spin polarization

Alkali-vapour-jet charge exchange-cell upgrade   (Na -> Rb)

31Mg spin-polarization test (T1/2=230(20) ms)